EPRG & CEEPR European Energy Policy Conference Paris 6 – 7 July 2017

Low Carbon Cities: London explorations

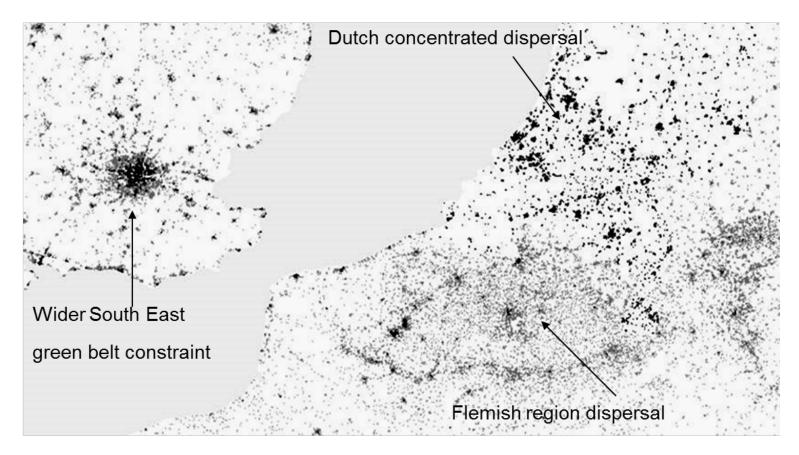
Marcial Echenique University of Cambridge

Explorative options analysed for CO₂ reductions in London

1. Urban Form: compact or dispersed?

- Argument for compact development (Newman and Kenworthy, 1999)
- Assessment of alternative urban form (Echenique et al, 2012)

2. Pricing congestion


- London experience
- Other Cambridge

3. New technologies in transport and buildings

- Compact and dispersed
- retrofit

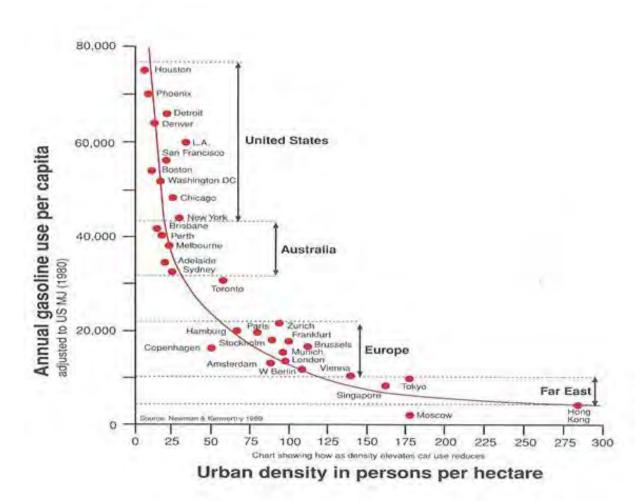
4. Conclusions

Alternative urban forms: Energy in Transport (30%) & Buildings (42%)

• Research (mainly South East of the UK) by a consortium of universities

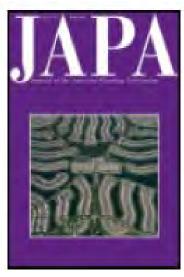
London: current land and transport policies

- Green belt and compaction in the last decade:
 - 72% new built housing is in "brownfield" (not where employment is growing necessarily)
 - 89% increase in gross density in new built (from 56 to 106 dw/ha)
- Investment in public transport and pricing congestion in central area:
 - 19% increase in public transport trips in London (mainly rail) but increased VKT in the outer region due to separation of jobs and housing
 - Effective congestion pricing in central London (17% reduction of cars entering the area)


The case for compact development: Newman & Kenworthy (1999)

Faulty causal argument

 Higher density
 reduces transport
 energy


 Real causal argument

 Lower transport cost
 reduces density

Urban Form Results

- Published in Growing Cities Sustainably: Does Urban Form Really Matter? Journal of the American Planning Association Vol 78:2 2012
- Conclusions:
 - Relatively minor environmental differences between urban forms which are overwhelmed by socio-economic trends
 - Compact cities reduces environmental impacts by less than
 5% but increases economic and social costs
 - Dispersed cities increases environmental impacts marginally but reduces economic and social costs
 - More scope for reduction of carbon in cities is by the introduction of *new technologies in transport and energy generation*

Pricing congestion for CO₂ reduction

• London experience:

- 17% reduction of car traffic into central area (but no change in speeds due to reduction of road space)
- 16% reduction of CO₂ emissions (but increase in the fringes of the pricing area)
- Other Cambridge study:
 - 27% reduction of car traffic (but increase in bus use)
 - 8% reduction in CO₂ (less impact due to bus increase)
- Source: Road Congestion Pricing in Europe (Eds. H W Richardson and C Bae, 2008)

Exploration of technology in future cities

Compact: CHP, public transport, etc. Dispersed: renewable energy – ground source heat pumps, PV, electric cars, etc. Retrofit is essential

Conclusion: Buildings: medium to low density may enable a greater saving in CO₂ emissions than higher density development A Study of Urban Form and the Integration of Energy Supply Technologies in World Renewable Energy Congress 2011 – Sweden

Conclusions

• Urban Form:

- dispersed around transport corridors
- Polycentric structure (nodes of public transport)
- Congestion pricing:
 - Effective in reducing car traffic and CO₂ emissions
 - Encourage dispersal
- Technological potential in building and transport:
 - Dense nodes facilitate CHP
 - Dispersal facilitates renewables (PV, heat pumps, etc.)
- Thanks