

Power Market Challenges in the US: Today's Responses, Tomorrow's Needs

EPICS JOHNS HOPKINS IMPERIAL COLLEGE UNIVERSITY MELBOURNE

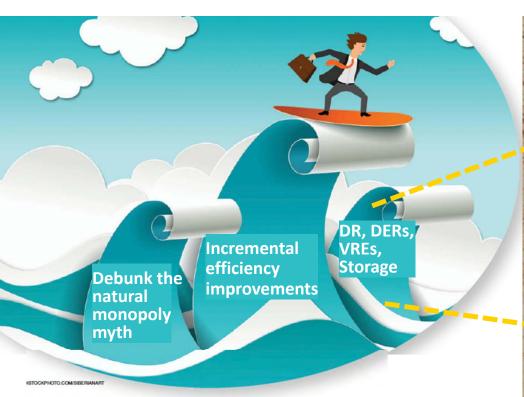
Benjamin F. Hobbs, bhobbs@jhu.edu

Schad Professor of Environmental Management Dept. of Environmental Health & Engineering, The Johns Hopkins University

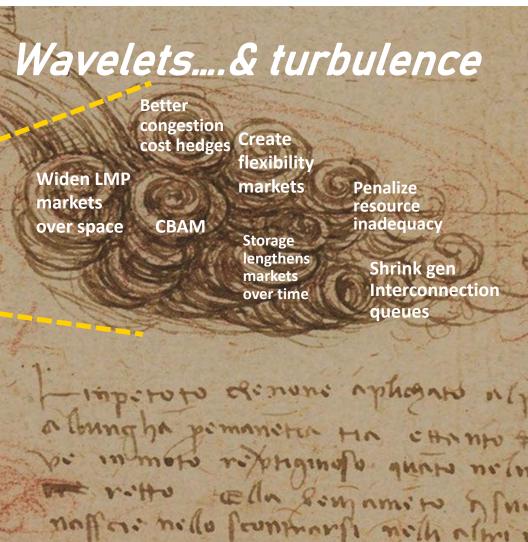
Director, EPICS (Electric Power Innovation for a Carbon-Free Society) NSF Global Climate Center

Co-Organizer, Columbia-JHU Future Power Markets Forum (powermarkets.org)

Chair, California ISO Market Surveillance Committee


Thanks to my colleagues & students, especially Qingyu Xu (Tsinghua U), Yinong Sun (Sequoia) and USDOE, NSF, CAISO for support. All opinions are my responsibility

EPRG Winter Meeting, 8-9 Dec. 2023


Outline

- I. Waves & wavelets
- II. Are our problems your problems? (menti.com poll)
- III. Some California responses to those problems

Three Waves of U.S. Reforms

Hobbs & Oren, Power & Energy Magazine, 2019

da Vinci, <u>Studies of water</u> (c.1510-12) <u>www.rct.uk/collection/912662/studies-of-water</u> . Royal Collection Trust Copyright Her Majesty Queen Elizabeth II 2021.

Features of US Markets

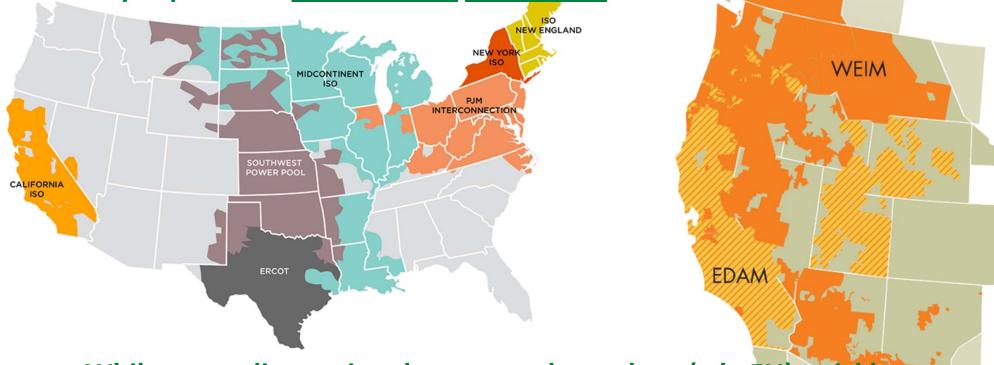
- Arbitraged day-ahead & balancing markets
- Co-optimized energy, ancillary services, transmission
- Detailed offers reflect internal constraints & costs
- Ex ante mitigation of market power
- Detailed resource & network modeling
- Settle energy using <u>LMPs</u>
- States lead <u>resource adequacy</u>

Wavelets & Turbulence

Sun, Levin, Kwon, Xu, Singhal, Ela, Zhou, Crespo-Montanes, Frew, Hytowitz, Mills, Heidarifar, de Mello, Botterud, Hobbs, "Research Priorities and Opportunities in United States Wholesale Electricity Markets", NREL/TP-6A20-77521, doi.org/10.2172/1785331

Wavelet	Challenge	Today's Response	Future Need
1. Energy pricing over space (LMP)	Exploit resource diversity over large regions	Expand energy-only markets	
2. CBAM	Distortions from subregional C pricing	Carbon border adjustments	
3. CRR reform	Hedge LMP risks fairly	Give away & auction CRRs	
4. Energy pricing over time	Optimize storage, given uncertainty (price, degradation, & market power mitigation)	Storage offers & bids, but weak mitigation	
5. Flexibility reserves	Flexibility undervalued by markets	Flexiramp product	
6. Long-run resource adequacy	Provide right investment incentives as markets expand spatially	Short run restrictions on leaners' market participation	
7. Transmission planning	2 TW of wind/solar in the US queue	First in/first out, with FERC encouragement of coordination	

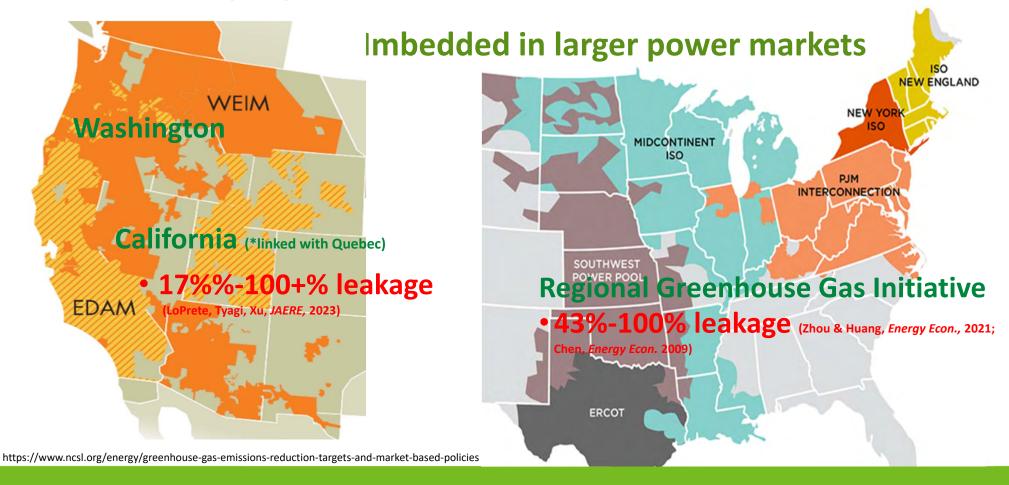
AUDIENCE POLL: What is the relevance to the UK market of the challenges faced by the US today?


Wavelet	Challenge	Today's Response Future Need	
1. Energy pricing over space (LMP)	Exploit resource diversity over large regions	Link neighboring spot markets using LMP C pricing border adjustments Create/reform financial transmission rights Optimally integrate storage in spot markets Create flexibility product for spot markets Coordinating capacity mechanisms in linked markets	
2. CBAM	Distortions from subregional C pricing		
3. CRR reform	Hedge LMP risks fairly		
4. Energy pricing over time	Optimize storage, given uncertainty (price, degradation, & market power mitigation)		
5. Flexibility reserves	Flexibility undervalued by markets	Dealing with the back-up in gen connection requests	
6. Long-run resource adequacy	Provide right investment incentives as markets expand spatially		
7. Transmission planning	2 TW of wind/solar in the US queue		

1. Market enlargement

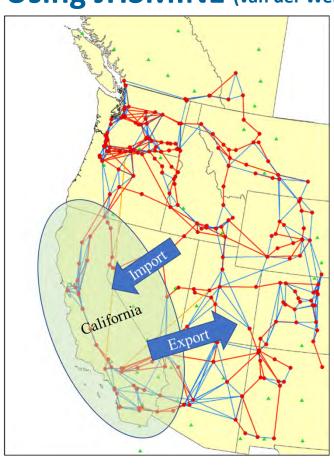
"To call US power markets 'Balkanized' insults southeast Europe" (NY Times)

We slowly expand ISO co-optimized LMP-based markets ...


..While expanding regional energy-only markets (a la EU) quickly

.. While competing for participants (SPP vs EDAM)

2. Correcting inefficient subregional C prices: CBAM

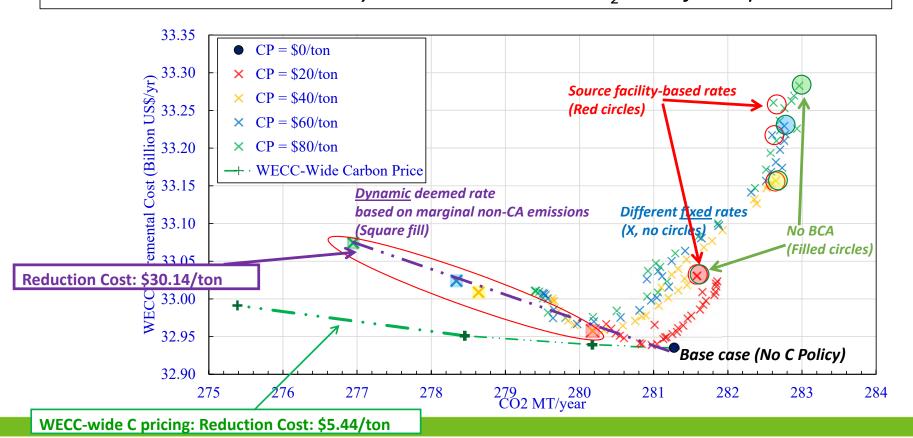

US Carbon Trading Regions ...

Case Study: Western North American Markets 2034

Using JHSMINE (van der Weijde & Hobbs En. Econ., 2012, Xu & Hobbs, Energy Policy, 2021)

Questions:

- 1. Can Carbon Border Adjustment Mechanisms costeffectively reduce emissions?
- 2. Can CBAMs be counter productive?
- 3. How do answers depend on the precise design & parameterization?


CBAM: Evaluate choices for design:

- "Trace" & penalize dirty imports by source OR:
- All imports pay same \$/MWh
 - = deemed <u>marginal non-CA</u> emissions (ton/MWh)
 - * price of AB32 CO₂ [\$/ton]
- Various "Deemed rates"; can be static or dynamic

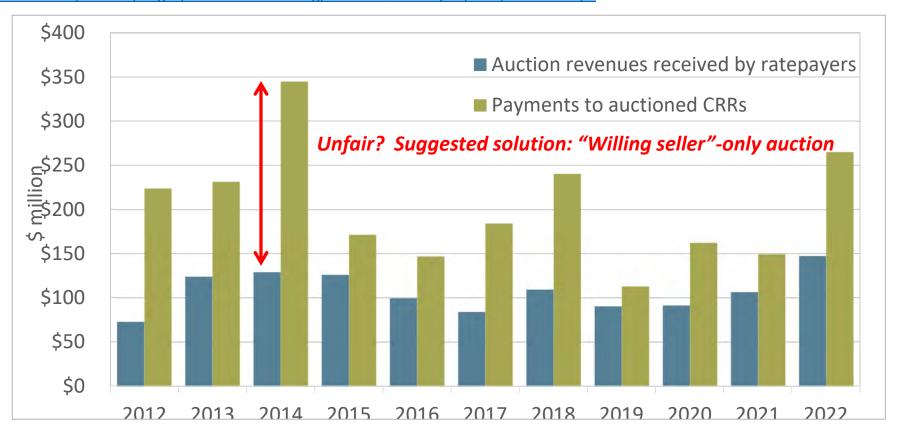
2034 West-wide cost & emissions resulting from California's AB32 + 60% RPS, under various CBAM systems and deemed CO₂ rates for imports

1

3. Hedging LMP risks with Congestion Revenue Rights

- Vanilla CRR: ISO pays MW quantity * (P_{sink} P_{source})
 Big design questions:
 - How many rights?
 - Who gets the rent? (who is given the rights?)
 - What if payments owed << congestion revenue? (if too many rights allocated)

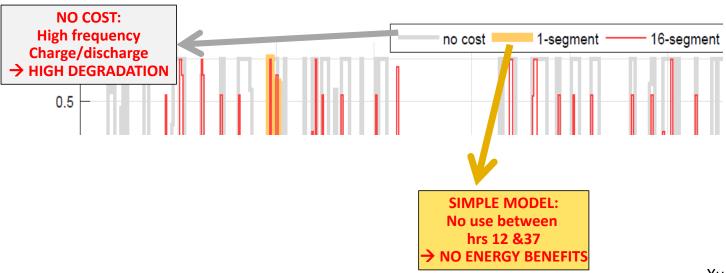
2. California:


- Give some rights to consumers, auction to reconfigure
 - Sell rest of rights in same auction (revenues to consumers)
- Problem: Auction revenues << Payments

Ratepayer Auction Revenues vs. Congestion Payments for Auctioned CRRs

Source: CAISO Market Monitor 2022 Annual Report (Fig. 6.10),

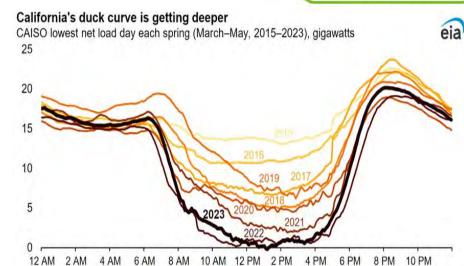
www.caiso.com/market/Pages/MarketMonitoring/AnnualQuarterlyReports/Default.aspx

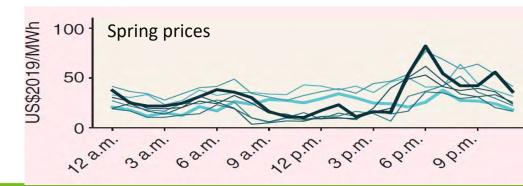

4. Intertemporal pricing: Storage optimization

CAISO has 7 GW of battery storage in a 45 GW peak system

- Market software can't model all physics of storage (marginal value depends on state-of-charge, long run degradation)
 - → so CAISO allows storage to make its own bids to charge & offers to discharge
 - → But offers are not SOC dependent, so can't model degradation costs
- Batteries may be the only resource available in 5 minute intervals, and can be large (Moss Landing: 750 MW).
 - → Problem: How to do market power mitigation when "cost" is based on opportunity cost, not fuel?

Ignoring or oversimplifying degradation costs → gross over / under use of batteries in ISO-NE

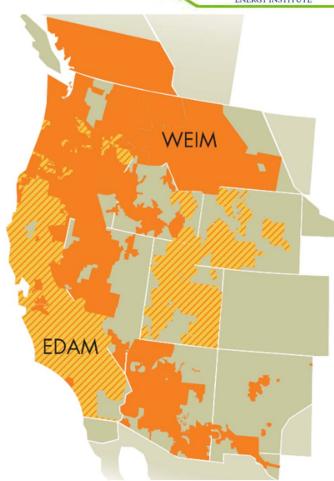

Xu, Kirschen et al., IEEE Tran. Power Sys, 2017


In the face of difficult or impossible to estimate costs, should we give up on ex ante market power mitigation?

5. Intertemporal pricing: Flexibility is undervalued

- Flexibility/options undervalued: price volatility suppressed by looooong intervals & lack of uncertainty in models (Lund et al. 2015)
- Several ISOs created "flexible ramp product" (procure gen "head room" up & down, to accommodate unexpected net load ramps)
 - Procured zonally
- Flexiramp's problem: ~zero procurement price & underdeployed
 - We procure it at buses where energy has low value due to congestion—so turns out useless!
- Solution? Network-constrained ramp (a flexibility LMP!)

6. Resource adequacy: Texas shows it can be a matter

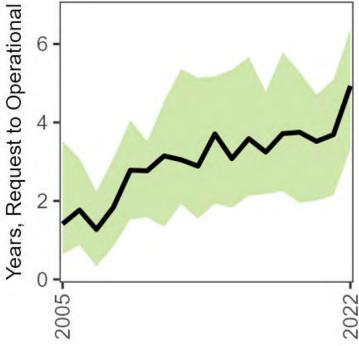

OHNS HOPKINS
ALPH O'CONNOR SUSTAINABLE
ENERGY INSTITUTE

of life & death

- ► CAISO once hoped for a west-wide ISO (energy, ancillary services, RA)
 - But its DA/RT west-wide markets (EDAM/WEIM) are now settling for just energy
 - Question: how do you prevent member subsystems from leaning on each other's capacity?
- ▶ **Approach:** Incent subsystems with <u>short-run</u> <u>penalties</u> to provide <u>long-run</u> RA.

In each market interval, if subsystem doesn't have on-line (and flexible) capacity to meet 97.5th percentile of net load/ramp risk, then:

- Restrict MW interchange
- Financially penalize interchange


7. Transmission traffic jam: new gen

connection process

- > Power plants seeking transmission connection by type:
 - 2 TW in queue (45% solar)
 - Cf. 1.2 TW installed capacity (44% gas)
- > Approaches (FERC/MISO/...):
 - Change first-in/first-out to firstready/first-out
 - Proactive transmission planning and either choose winners or auction capacity
 - **Connect-and-manage**

900 800 Capacity in Queues (GW) 700 600 500 400 300 200 100 Storage Wind

Median/interquartile range of years from generator interconnection request to operation for projects dating back to 2005

USDOE National Transmission Needs Study, Oct. 31, 2023 (Data from Lawrence Berkeley Natl. Lab.; https://emp.lbl.gov/queues)

Conclusion: What's Needed in Long Run

Sun, Levin, Kwon, Xu, Singhal, Ela, Zhou, Crespo-Montanes, Frew, Hytowitz, Mills, Heidarifar, de Mello, Botterud, Hobbs, "Research Priorities and Opportunities in United States Wholesale Electricity Markets", NREL/TP-6A20-77521, doi.org/10.2172/1785331

Wavelet	Challenge	Today's Response	Future Need
1. Energy pricing over space (LMP)	Exploit resource diversity over large regions	Expand energy-only markets	Expand co-optimized energy/reserve/RA markets
2. CBAM	Distortions from subregional C pricing	Carbon border adjustments	Systemic C pricing
3. CRR reform	Hedge LMP risks fairly	Give away & auction CRRs	Consumers keep rents, maintain CRR hedging value
4. Energy pricing over time	Optimize storage, given uncertainty (price, degradation, & market power mitigation)	ISO models SOC & rolling horizons; Storage offers & bids but weak mitigation	Multiple intraday markets and settlements
5. Flexibility reserves	Flexibility undervalued by markets	Flexiramp product	Deliverability
6. Long-run resource adequacy	Provide right investment incentives as markets expand spatially	Short run restrictions on market participation upon "leaners"	Consistent RA markets that allow inter-market trading
7. Transmission planning	2 TW of wind/solar in the US queue	First in/first out, with FERC encouragement of coordination	Proactive transmission planning under uncertainty