

Market design for large shares of renewables: time and space

David Newbery & Karsten Neuhoff

EPRG Spring Research Seminar

Cambridge 16 May 2008

http://www.electricitypolicy.org.uk

Outline

- Challenge for GB power market
- Suitable market design
 - Congestion management, plant operation
 - Location/type of investment
- Transition
 - Fair treatment of existing assets
 - avoid discouraging wind
- Consequences of large wind share

The challenge of renewables

- 20% EU renewables target by 2020 agreed
- =15% renewable **ENERGY** for UK
- =30-40% renewable ELECTRICITY
- likely to be large shares of wind
 - Much in Scotland: queue of 11 GW, 9GW Wales
- At 25% capacity factor, 25% wind
 - = 100% peak demand
- => volatile supplies, prices, congestion,

Electricity generated gross

Current transmission access

- Connect for firm access
 - delay until reinforcements in place
- => excessive T capacity for wind
 - excessive delays in connecting wind
- TSO uses contracts and Balancing Mechanism to manage congestion
 - weak incentives on G to manage output
 - costly to deal with Scottish congestion

Re-dispatch to resolve constraints in England and Wales

Costs rise rapidly with constrained links to Scotland

Balancing - problems and requirements

- efficient dispatch: schedule ahead of time
 - to allow for warm-up, ramping, etc
- wind forecasts increasingly accurate at -4hrs
- day-ahead market bad for wind contracting
- etc?

PRG 8

Ability to vary thermal output

Balancing prices and volumes Britain April-December 2004

Summary of problems

- Losses not reflected in dispatch
- T access is firm all or nothing
- Constraints only reflected through BM
 - may be OK if BM efficient and competitive, but is it? thin market? Dual pricing?
- Intertemporal dependencies may not be efficiently handled
 - would short run wind output forecasts allow more efficient scheduling of fossil plant?

The argument for change

- A flawed system can be improved
- => potentially everyone can be made better off
- The challenge:
 - identify the efficient long-run solution
 - that can co-exist with an evolving regime for incumbents
 - apply new regime to all new generation
 - which compensates incumbents for any change
 - while encouraging them to migrate

Efficient congestion management

- Nodal pricing or LMP for optimal spatial dispatch
- All energy bids go to central operator
- Determines nodal clearing prices
 - reflect marginal losses with no transmission constraints
 - Otherwise nodal price = MC of export (or MB of import)
- Bilateral energy contracts
 - Can submit firm bids => pay congestion rents
 - Can submit price responsive bids => profit over
- Financial transmission contracts hedge T price risk

Figure 6.6. Change in investment relative to Scenario M2 with 2GW transmission expansion

Efficient balancing market

- Use right combination of plants to
 - provide spinning reserve
 - provide flexibility to vary output over periods of mins 4 hours (i.e. are warm, and given ramping constraints)
 - meet next demand peak and demand low
 - handle varying transmission constraints
- => inter-temporal optimisation, updated with new wind/demand forecasts
- Market participants submit multi-part bids
 - Start up cost/time, Ramping rates, etc
 - Marginal generation cost
 - Part load constraint, etc
- => POOL type approach

Spatial and temporal optimisation

- => nodal pricing + central dispatch
- Nodal price reflects congestion & marginal losses
 - lower prices in export-constrained region
 - efficient investment location, guides grid expansion
- Central dispatch for efficient scheduling, balancing
- Market power monitoring benchmark possible
- PJM demonstrates that it can work
 - Repeated in NY, New England, California (planned)

Objections to nodal pricing

- Disadvantages Scottish generators
 - but would benefit voting Scots consumers!
- => Large revenue shifts for small gains
- All earlier attempts thwarted by courts
- => need to compensate losers

Need to make change *before* large investments made (wind + transmission)

Other options?

- Can the present system be made to work?
 - Allow G entry connect and manage?
 - but what about efficient spatial and temporal dispatch?
- => Trading of firm access rights? (OK in theory?)
 - Liquidity does not even exist at UK level
 - Loop flows –require complex reconfiguration
 - cannot address efficient intertemporal dispatch/balancing
- Liquid competitive markets => efficiency (if externalities reflected in prices)

Hard to imagine trading can achieve all this

Transition for existing plant

- Existing G receives long-term transmission contracts but pays grid TEC charges
- for output above TEC, sell at LMP
- ⇒ G significantly better off than at present
- ⇒ No T rights left for intermittent generation

Challenge: devise contracts without excess rents and facilitate wind entry

Contract design for Scottish FTRs

Current system

Wind output Power price

Proposed system

- FTR option for incumbent
- **Caps FTR revenue to incumbents**
- FTR option not given to incumbents

time

Net profit energy

Implications of substantial wind

- Much greater price volatility
 - mitigated by nodal pricing in import zones
 - requires CfDs and nodal reference spot price
- Reserves (much larger) require remuneration
 - VOLL*LOLP capacity payment?
 - or contracted ahead by SO?
 - Or will spot price volatility induce contracts that cover availability costs?

Simulation – more volatility, adequate reward for CCGT

Price duration curves under the Pool and Balancing Mechanism

Implications of volatility

- carbon price set in expectation of renewables?
- Coal and OCGT for peaking/balancing?
- Encourages interconnectors (esp to Norway)
- Base-load plant margins fall to CCGT level
- => discourages high capital cost plant (nuclear, CCS)
- => increased need for contracting (good)
- => further stimulus to integration? (not so good)

Conclusions

- Renewables target requires and currently lacks
 - efficient transmission access regime
 - efficient market design for dispatch and balancing
- => ideal: nodal pricing + pool/SO control
- transition arrangements
 - for new/old Generation
- => careful transition contracts to avoid excess rents

Market design for large shares of renewables

David Newbery & Karsten Neuhoff

EPRG Spring Research Seminar

Cambridge 16 May 2008

http://www.electricitypolicy.org.uk