

### Strategic Eurasian Natural Gas Market Model for Energy Security and Policy Analysis Application to South Stream investment and Ukraine's gas diversification policy

*Chi Kong CHYONG EPRG, Cambridge Judge Business School, University of Cambridge* 

> Benjamin F. HOBBS E<sup>2</sup>SHI, The Johns Hopkins University

09 November 2014 INFORMS Annual Meeting, San Francisco, USA

# Contents

- Motivation
- The model
- Results South Stream
- Results Ukraine's gas diversification policy
- Conclusions

## Motivation



# Gas supplies as proportion of total energy use



NY Times, 10/31/2014

# Contents



- Motivation
- The model
- Results South Stream

NY Times, 10/31/2014

- Results Ukraine's gas diversification policy
- Conclusions

# **Model Description**

- Model foundations:
  - Microeconomics
  - Game Theory
- Purpose:
  - Analyse energy policy questions such as economic justification for energy security projects
- Features:
  - Each player: MAX profit s.t. constraints
  - Includes gaming in the upstream gas market by large producers, or perfect competition
  - Flexible and generalizable under various market assumptions and data inputs
- Details are in Chyong and Hobbs, *Energy Economics*, (2014)

# Model Description



- Capture the full gas value chain:
  - Producers
  - Traders
  - Pipeline transmission operators
  - LNG terminal operators
  - LNG shipping
  - Storage operators
  - Final markets

## Model Description Representing market power in the gas supply chain

- Producers anticipate traders' reaction (Asymmetric/Leader-Follower game)
- Traders and Producers: Cournot Game (i.e., game in quantities)
   → each player believes that if it changes gas sales, competitors maintain sales by cutting or raising their prices
- Consumers are represented by aggregate inverse demand functions in each market
- These are standard in other equilibrium models, such as: WGM (Gabriel et al.), DIW Gas Market Model (Holz et al.), GASTALE (Boots, Rijkers, Hobbs), EWI COLUMBUS Global Gas Model etc.

# Modelling market power of large gas transporters (e.g., Ukraine)

- New: Market power of large gas transporters
- Transit market power represented by the <u>conjectured transit</u> <u>demand curve</u>. Large transit countries (e.g., Ukraine, Belarus) believe that they face a declining effective demand curve for their services with an assumed slope *M* (exogenous parameter):

$$(x - x^*) - M(tf - tf^*) = 0, \qquad M < 0$$

where (*x*-*x*\*) is change in demand for transit that the transit country conjectures will happen if it changes its transit fee by (*tf*-*tf*\*)



# Model Outputs

- Consumer P's, Q's
- P's for gas transmission services, LNG services
- Gas trade Q between contracted parties
- Production Q at each production field
- Storage withdrawal/injection Q
- Gas flows for both LNG and pipelines
- Investment in gas infrastructure facilities (production, pipeline, LNG, storage)

# Data Input

| INFORMATION                          | AVAILABILITY | SOURCE                                                       |  |
|--------------------------------------|--------------|--------------------------------------------------------------|--|
| Production capacities                | $\checkmark$ | IEA Natural Gas Information 2013                             |  |
| Pipeline transport capacities        | $\checkmark$ | IEA, EIA, and various other sources                          |  |
| LNG regasification capacity          | $\checkmark$ | IEA Natural Gas Information 2013                             |  |
| Liquefaction and shipping capacities | $\checkmark$ | IEA Natural Gas Information 2013;<br>Bloomberg               |  |
| Storage withdrawal capacity          | $\checkmark$ | IEA Natural Gas Information 2013                             |  |
| Injection capacity                   | $\checkmark$ | IEA Natural Gas Information 2013                             |  |
| Working volume capacities            | $\checkmark$ | IEA Natural Gas Information 2013                             |  |
| Reference prices                     | $\checkmark$ | IEA Natural Gas Information 2013                             |  |
| Consumption levels                   | $\checkmark$ | IEA Natural Gas Information 2013                             |  |
| Price elasticities                   | $\checkmark$ | Various academic papers                                      |  |
| Pipeline transport costs             | $\checkmark$ | EPRG Pipeline Costing Model                                  |  |
| LNG liquefaction costs               | $\checkmark$ | US DOE, IEA and various industry reports                     |  |
| Regasification and shipping costs    | ✓            | Academic papers, US DOE, IEA and various<br>industry reports |  |
| Storage withdrawal costs             | $\checkmark$ | Academic papers, US DOE, IEA and various industry reports    |  |
| Injection and working volume costs   | $\checkmark$ | Academic papers, US DOE, IEA and various industry reports    |  |
| Production costs                     | $\checkmark$ | EPRG Production Costing Model                                |  |

# Contents

- Motivation
- The model
- Results South Stream
- Results Ukraine's gas diversification policy
- Conclusions



## South Stream economics

• South stream is not a profitable project under 'normal' circumstances, in absence of Ukraine transit market power



## South Stream economics

 Nor is South Stream profitable project under gas transit disruptions through Ukraine as well, <u>unless</u> project developers (Gazprom) are very risk averse

|                  | NPV, \$ bn       |                        |                      |
|------------------|------------------|------------------------|----------------------|
|                  | No<br>Disruption | Moderate<br>Disruption | Severe<br>Disruption |
|                  | [1]              | [2]                    | [3]                  |
| Low Demand Case  | -6.43            | -6.39                  | -6.18                |
| Base Case        | -5.36            | -5.19                  | -4.46                |
| High Demand Case | -3.17            | -2.93                  | -1.91                |

## South Stream economics

• South Stream profitable only if Ukraine increases transport cost; i.e., exerts its transit market power



# Contents

- Motivation
- The model
- Results South Stream



NY Times, 10/31/2014

Results – Ukraine's gas diversification policy
Conclusions

# "Diversification" the buzzword of the month in EU energy policies

Ukraine's gas diversification strategy:

- interconnection Central Europe ("Reverse flow")
- LNG project in southern Ukraine
- Equity participation in LNG projects in Poland and Croatia
- Develop indigenous gas production, including shale

# Potential non-Russian supply options for Ukraine – Fixed cost



# Potential non-Russian supply options for Ukraine

- How much diversification does Ukraine need?
  - How much gas would Ukraine receive from Europe?
  - At what P?

## This depends on international gas markets



# Variable costs for non-Russian supply options



# Conclusions

- Equilibrium models useful to support rational, rigorous analysis of investment (South Stream) & policy
- Increasing energy costs & their effects on EU competitiveness
  - → we need better models for rigorous analysis of economic impact of energy security policies and regulations on EU energy markets & economies
- EPECs needed to evaluate security of supply regulations
  - Where regulators are Stackelberg leaders who set rules which must be followed by all market participants
  - Two-stage games result in EPECs

# NY Times, 10/31/2014

## Thank you for your attention

Email: k.chyong@jbs.cam.ac.uk