

UK Electricity Market Reform and the Energy Transition: Emerging Lessons

Michael Grubb, *University College London*David Newbery, *EPRG, University of Cambridge*

41st International IAEE Conference Groningen, The Netherlands 12th June 2018

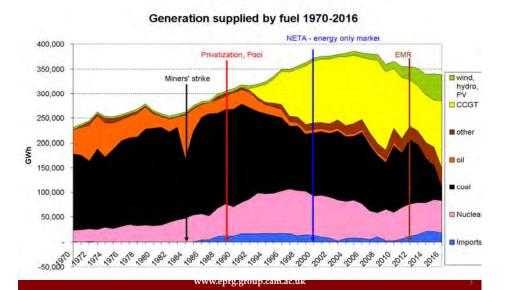
www.eprg.group.cam.ac.uk

Outline



- Evolution of UK policy & regulation
- EMR reforms: aims and instruments
 - Need better support for RES
 - Need better signals than ETS for decarbonization
 - Need timely flexible capacity

EMR results


- carbon price support, Emissions performance standard
- -CfDs for zero-carbon generation and auctions
- capacity auctions
- Lessons for market design and regulation
 - Capacity needs reward
 - auctions better than bureaucrats
 - RES support needs improving
 - network tariffs need major rethink

www.eprg.group.cam.ac.uk

Evolution of electricity market and policy

UK electricity journey – overview

Policy environment Regulatory remit First liberalisation "Promote competition" Competition through electricity pool System marginal price + cap^y payment Concerns about oligopolistic 1990s ⇒ "Dash for gas", based on Long term contracts (PPAs) with distribⁿ companies ⇒ Some contract support for renewables ⇒ Collapse of R&D Bilateral trading market (NETA/BETTA) "Protect interests of replace pool, energy-only market consumers" Vertical integration of generators with supply companies: 2000s Growing concerns about lack of ⇒ Limited investment investment or new entry, ⇒ Market certificate trading (ROCs) support transmission connection & for renewables bottlenecks, and short-termism **Electricity Market Reform (EMR)** "Protect interests of present 2010s and future consumers" Climate Change Act

Why Electricity Market Reform?

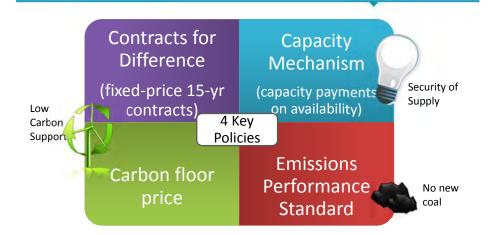
- ETS offers inadequate low-C investment signal
- RES lagging countries with feed-in tariffs
- Ambitious RES targets increase intermittency
 - Need flexible peaking reserves
 - Normally comes from old high cost plant = coal
 - Large Combustion Plant Directive 2016 limits coal
 - Integrated Emissions Directive further threat to coal
 - Carbon price floor => close old coal
 - high EU gas prices and low load factors
 - gas unprofitable, new coal threatened by future C price
- Future prices now depend on uncertain policies
 - on carbon price, renewables volumes, other supports
 - on policy choices in UK and EU

Hard to justify investing in reliable power Consensus that market not delivering objectives

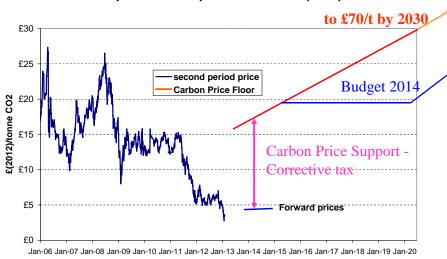
www.eprg.group.cam.ac.uk

Electricity Market Reform (EMR)

- Controversial step for a pioneer of electricity liberalisation
- Ofgem's Project Discovery (2009) Regulator's detailed study of the future challenges of the electricity market
- Addressing key risks identified became the three aims of EMR:



What is EMR?

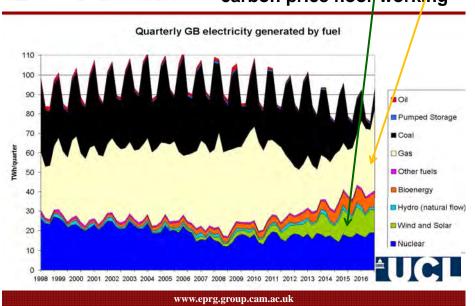


EMR brought major changes to the market.

Main regulatory input on design of Capacity Mechanism and overall institutional

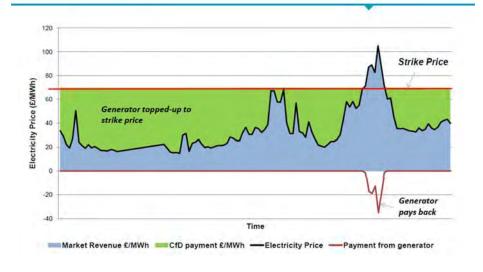
UK's Carbon Price Floor - Budget March 2011

EUA price second period and CPF £(2012)/tonne


D Newbery

8

Source: EEX and DECC Consultation

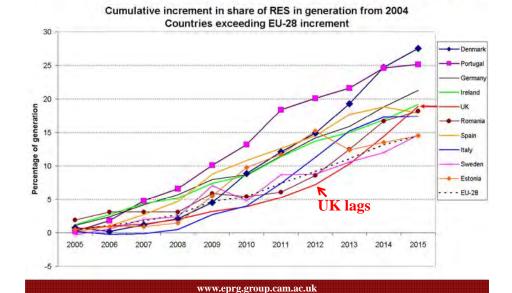

Coal displaced by RES & gas: carbon price floor working

Contracts for Difference (CfDs)

10

ofgem Making a positive difference for energy consumers (structure for renewable energy & nuclear)

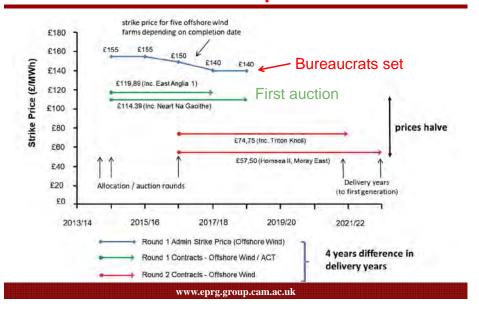
CAMBRIDGE Research Group results


Auctions better than bureaucrats!

Technology		admin price	lowest clearing price	2015/16	2016/17	2017/18	2018/19	Total Capacity (MW)
Advanced Conversion	£/MWh	£140	£114,39			£119.89	£114.39	
Technologies	MW	1				36	26	62
Energy from Waste with	£/MWh	£80	£80				£80.00	
Combined Heat and Power	MW						94.75	94.75
Offshore wind	£/MWh	€140	£114.39			£119.89	£114.39	
	MW	100			_	714	448	1162
Onshore wind	£/MWh	£95	£79.23		£79.23	£79.99	£82.50	
	MW				45	77.5	626.05	748.55
Solar PV	£/MWh	£120	£50.00	£50.00	£79.23	/		11.7
	MW			2.88	36.67			69.55

www.eprg.group.cam.ac.uk

withdrawn


WINIVERSITY OF Energy Policy UK RES catching up

UK Off-shore wind auction prices

Reforming RES-E support

•Learning spill-overs need remuneration

- Almost entirely from making and installing equipment
- ⇒ Contract **€X**/MWh for (e.g.) 30,000 MWh/MW, auction determines premium **€X**

Reasons:

- Subsidy targeted on source of learning = investment aid
 - Reduces cost of capital and risk via debt finance
 - Ideally associated with CO₂ credit per MWh
- Could expose RES to current locational spot price
 - => incentivizes efficient location, connection
- Does not amplify benefits of high wind/sun
 - Not over-reward favoured locations with same learning
- Auction better than bureaucrats at minimizing cost

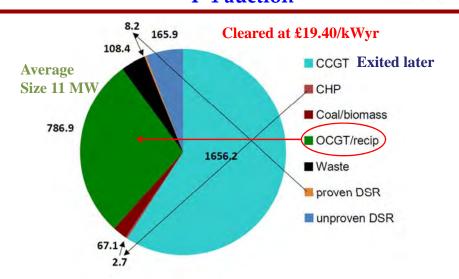
www.eprg.group.cam.ac.uk

Capacity Mechanism / Market

(to reward 'firm' generating capacity)

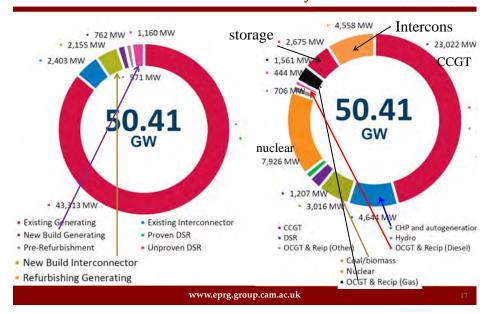
- Ensure market can deliver security of supply
- Payment for availability to encourage investment

- Market wide auction of capacity obligations, run by National Grid
- Successful bidders get fixed **revenue** additional to wholesale market
- Obligated to deliver capacity when needed or face penalties
- Technology neutral but those receiving CfDs are not eligible
- Pilot scheme to help Demand Side Response (DSR)



- ✓ Reduces price volatility
- ✓ Insurance against blackouts
- ✓ Encourages demand side somewhat
- ? Expected cost estimate required for new CCGTs, around £50/kw/yr
- ⇒ Would appear to cost consumers £2.5bn/yr for 50 GW capacity
- ⇒ Lower prices impact on interconnector / other investment
- × Design makes it very difficult for DSR to participate equally

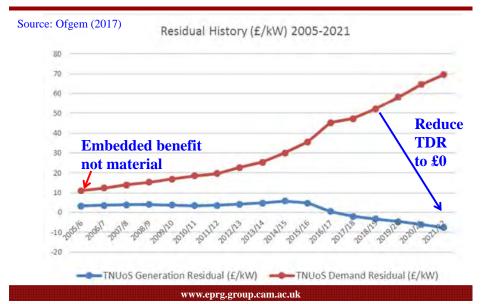
New build 2014 T-4 auction



cleared at £8.40/kWyr

Flaws in GB Capacity

- Transmission-connected generation TG pays full G TNUoS
- Distribution-connected generation DG receives L TNUoS
 - But avoided cost at most the transmission demand residual
 - = extra money to pay full cost less efficient charge of transmission
- ⇒represents extra £50/kWyr embedded benefit in 2018/19
- ⇒ Auction cleared at £20/kWyr
- ⇒DG gets £70/kWyr and TG gets £20/kWyr
- ⇒ Large number of small (10 MW) diesel and reciprocating engines win capacity contracts on distribution network


Over-encourages entry of costly subscale plant

Newbery

www.eprg.group.cam.ac.uk

GB Transmission demand residual – extra to DN connex

Reliability Options (RO) preferable to Capacity agreements

- RO sets strike price, s (e.g. at €500/MWh)
- Market price p reflects scarcity (Voll x LoLP)
 - SO sets floor price to reflect spot conditions
 - Wholesale price signals efficient international trade
- RO auctioned for annual payment P
 - 7-10 yrs for new, 1 yr for existing capacity
- Gen pays back wholesale price p
 - less strike price if available (p s)
 - G chooses whether to be paid p or s + P
- Suppliers hedged at strike price s for premium P Trade over interconnectors efficient

No need to pay foreign generators

www.eprg.group.cam.ac.uk

Criticisms of EMR

- "Contracts mark return to Single Buyer Model"
 - but all IPPs in 1990s had long-term PPAs
- "Bureaucrats, not markets choose investment"
 - but current RES support Govt designed after intense lobbying by incumbents
 - => tenders, auctions to create competition
 - => contracts should incentivise efficient operation
- "Wholesale price will be distorted by contracts"
 - fossil mostly at margin until 2020+, problem is excess PV on sunny summer weekends
 - Problem from RES, not contracts

D Newberv

21

www.eprg.group.cam.ac.uk

UK Electricity Market Reform - Key lessons

- For Strategic investments e.g. security and sustainability, especially emerging renewables - a role for government is inescapable
- Can shifting some risk to government (e.g. long term contract) be good?
 - the risks arise from private perception of policy risk;
 - markets (particularly capital markets) are myopic; or
 - the benefits are partly public (e.g. due to inadequate environmental pricing, or innovation / learning, etc.)
- Do we need a Capacity Mechanism in addition to low carbon supports?
 - Yes in UK conditions but scope is crucial, so too is design
- Auctions are very valuable competitive pressures remain important
 - Better than government decision at cutting costs / finding options
- Institutional complexities
 - contracting bodies and their governance
- Transmission and distribution new frontiers?

Reference

This presentation is based on the working paper Grubb, M. and D. Newbery (2018). UK Electricity Market Reform and the Energy Transition: Emerging Lessons, CEEPR WP 2018-4 at http://ceepr.mit.edu/files/papers/2018-004.pdf

Acronyms

7	CAMBRIDGE	Research Group

CfD	Contract for Difference
CP	Capacity payment
CPF	Carbon Price Floor

DG Distribution-connected Generation

DN Distribution Network **EMR Electricity Market Reform**

Generation, Load G. L I ol P Loss of Load probability

PPA Power Purchase Agreement (long term contract)

Renewable energy/electricity supply

RO Reliability option

ROC Renewable Obligation (i.e. green) Certificate

SMC/P System Marginal Cost/Price T-4 Auction 4 yrds before delivery at date T

T&D Transmission and Distribution TDR Transmission demand residual

Transmission-connected generation TNUoS Transmission Network Use of System, G =Generation, L=Load

Value of Lost Load

23

24

Acronyms

CfD Contract for Difference
CP Capacity payment
CPF Carbon Price Floor

DG Distribution-connected Generation

DN Distribution Network
EMR Electricity Market Reform
G, L Generation, Load
LoLP Loss of Load probability

PPA Power Purchase Agreement (long term contract)

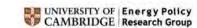
RES Renewable energy/electricity supply

RO Reliability option

ROC Renewable Obligation (i.e. green) Certificate

SMC/P System Marginal Cost/Price

T-4 Auction 4 yrds before delivery at date T

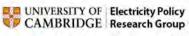

T&D Transmission and Distribution
TDR Transmission demand residual
TG Transmission-connected generation

TNUoS Transmission Network Use of System, G =Generation, L=Load

VOLL Value of Lost Load

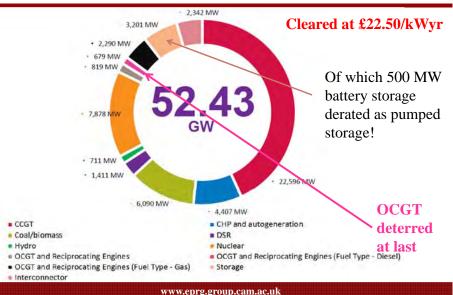
25

www.eprg.group.cam.ac.uk


Spare slides

Michael Grubb, *University College London*David Newbery, *EPRG, University of Cambridge*

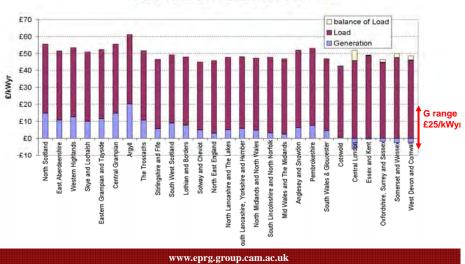
41st International IAEE Conference Groningen, The Netherlands


12th June 2018

www.eprg.group.cam.ac.uk

T-4 auction Dec 2016 for 2020/21

Efficient tariffs


- Distinguish efficient price and short-fall in required revenue
 - Efficient peak T price is marginal expansion cost
 - At best 30% average cost, less if demand falling
- Ramsey-Boiteux pricing => "tax" inelastic demand
 - ⇒ equi-proportional reductions in all types of demand
 - incl. option to take up to NKw
- Diamond-Mirrlees: tax only final consumers
- ⇒ T&D revenue shortfall on final consumption **not** net demand (at network connection)
- \Rightarrow reduces embedded G benefit from £60 to < £10/kWyr
- ⇒ **Regulator**s need to compute efficient T&D tariffs
- ⇒ and move faster. Auction in 1 day grants 15-yr contract

Newbery

GB TNUoS (Network) charges

