

- Customers
- Citizens

EDITED BY Tooraj Jamasb and Michael G. Pollitt

The Future of Electricity Demand

Customers, Citizens and Loads

Loads

Department of Energy and Climate Change 18 January 2012, London

CAMBRIDGE

www.eprg.group.cam.ac.uk

Background

- Acknowledgments: ESRC, EPSRC, Supergen-Flexnet project, and 41 contributing authors
- Outline:
 - ➤ Economics
 - ≻Technology
 - Social Dimensions
 - ➢Policy and Regulation

Some terms

- Demand Reduction
- Demand Side Management (DSM)

- Links between two.

- Time of Use (TOU) tariffs
- Critical Peak Pricing (CPP)
- Real Time Pricing (RTP)
 - Smart meters as enabler of above.
- Energy Services and Energy service companies (ESCos)
 UNIVERSITY OF Electricity Policy CAMBRIDGE Research Group

THE ECONOMICS

Energy demand is related to income...

1972-2008. Source: Platchkov and Pollitt, in J&P, 2011, p.20. CAMBRIDGE Research Group

Lower demand needs higher prices...

Source: Platchkov and Pollitt, in J&P, 2011, p.20 Source: Data from Steinbuks (2010).

Figure 1.4 Price as a driver of energy consumption - energy intensity versus energy prices. The data points include the following countries: Australia, Austria, Belgium, Crech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Korea, Lanembourg, Netherlands, Poland, Portugal, Slovak Republic, Spain, Sweden, UK, USA.

Similar relationship for just electricity...

Figure 1.5 Price as a driver of electricity consumption: 2008 data. Source: IEA (2010b); Countries: Austria, France, Luxembourg, Slovak Republic, United Kingdom, Belgium, Greece, Netherlands, Spain, United States, Czech Republic, Hungary, Norway, Sweden, Denmark, Ireland, Poland, Switzerland, Finland, Italy, Portugal, Turkey. Source: Platchkov and Pollitt, in J&P 2011, p.21

Variation by energy services...

Table 1.2 Lifetime costs of certain energy-related services

	Capital cost £	Lifetime energy $cost f_{c}$	Total cost £	Energy cost %
Light bulb 100W	0.35	18.98	19.33	98.2%
Light bulb low energy 100W	1	15.53	16.53	94.0%
Gas boiler	1000	7629.05	8629.05	88.4%
TV	700	540.01	1240.01	43.5%
Fridge	300	159.56	459.56	34.7%
Car (annual)	2500	1000.00	3500.00	28.6%
Computer	1000	48.84	1048.84	4.7%
Mobile phone (annual)	360	1.42	361.42	0.4%

Key assumptions: electricity 13p/kWh; gas 3.5p/kWh; 5% discount rate.

Source: Platchkov and Pollitt, in J&P 2011, p.35.

Scope for household TOU tariffs?

2009 data. Source: APX (2010), Platchkov and Pollitt, in J&P, 2011 p.39.

Household demand at the evening peak

Source: adapted from Lampaditou, E. and M. Leach (2005), Platchkov and Pollitt, in J&P, 2011, p. 40.

TECHNOLOGY

Lots of technical potential for DSM...

Table 5.1 Various control priorities, methods and durations for residential appliances

	Control	method		
Load	On/Off	Partial	Time	Priority
Hot water	1	\checkmark	Hour/Min	High
Washing machine	1	\checkmark	Hour/Min	High
Tumble dryer	1	1	Hour/Min	High
Dishwasher	V	1	Hour/Min	High
Fridge/Freezer	1	-	Min	High
Towel rails	J	\checkmark	Min	High
Elec. apps (with chargers)	J	V	Min	High
Lighting	1	V	Min/Sec	High
Elec. apps (heating)	V	V	Sec	High
Electric oven/hob	1	V	Min	Medium
Slow cookers	J	V	Min	Medium
Elec. heating	1	1	Min	Medium
Air conditioning	V	V	Min	Medium
Elec. blanket	V	J	Min	Medium
Microwaves	J		Sec	Medium
Extractor fans		1	Sec	Low
Hairdryers		V	Sec	Low
Elec. apps (instantaneous)	1			No control
Entertainment	J			No control

Source: Hong et al., in J&P, 2011, p.138.

Simulating UK appliance demand...

Figure 7.3 Total demand from domestic appliances in the UK. Notes: AC = air conditioner; OS = over and stove; RF = refrigerator; FR = freezer; WH = electric water heater; WM = washing machine; DW = dishwasher; CP = heating circulation pump; TD = tumble dryer; SUM = sum of all appliances.

Source: Silva et al., in J&P, 2011, p.189.

ty Policy CAMBRIDGE Research Group

Potential market for DSM...

Table 7.6 Annual savings and emission reduction from dynamic demand

Cost s	avings pe	r fridge (£/app)	Emi	ssion redu (kgCC	ction per f D ₂ /app)	fridge
Wind	1	Must-rur	i.	Wind		Must-run	
GW	6	8	10	GW	6	8	10
0	2.17	2.22	2.24	0	12.62	9.92	8.43
10	2.92	2.95	2.96	10	13.02	9.88	7,98
20	5.31	6.53	7.98	20	50.49	72.80	101.81
30	25.64	29.26	32.45	30	386.22	448.91	513.97

2008 figures. Typical bill in 2008 is £435. Dynamic demand saves marginal fuel costs, at high wind penetration it saves wind curtailment.

Source: Silva et al. , in J&P, 2011, p.204.

Cost benefit analysis currently marginal...

Table 7.8 Investment cost of different smart appliances (taken from Seebach et al., 2009)

	WM	WD	DW	RF and FR
Investment cost (£/appliance/year)	[2-4]	[2-4]	[2-4]	[6-8]

Source: Seebach et al., 2009.

Investment costs currently high compared with savings.

Source: Silva et al., in J&P, 2011, p.206.

Some evidence from DSM trials...

Table 6.7 Smart pricing trials

Trial	Timeframe	Sample size	Tariffs	Demand response
California Statewide Pricing Pilot	July 2003 to December 2004	2,500 residential and SMEs	TOU and CPP	Average critical peak reduction of 13%
Illinois Community Energy Cooperative	Started in 2003, ongoing	750 initially; 1,500 by 2005	RTP .	Up to 15% peak reduction; 4% energy conservation
Olympic Peninsula Project	Early 2006 to March 2007	112 residential customers	TOU and RTP	Average peak reduction of 15%
Ontario Smart Price Pilot	August 2006 to March 2007	373 residential plus control group of 125	TOU, CPP and RTP	CPP had highest impact on peak reductions (average 8.1%); 6% energy conservation

TOU = time of use; RTP = real-time prices; CPP = critical peak pricing.

In reality uptake an issue and average response lower...

Source: Brophy Haney et al., in J&P, 2011, p.180.

Electric vehicles not an energy issue...

Table 8.4 Projections of demand for electricity from EV and PHEV

		202	20		2030 120GW 390TWh					
Generating capacity Projected annual UK demand		1000	GW							
		3601	Wh							
	EVs	PHEVs	GWh	%NEP	EVs	FHEVs	GWh	%NEP		
Business as usual	70k	200k	400	0.1	500k	2500k	4200	1.1		
Mid range	600k	200k	1800	0.5	1600k	2500k	6700	1.7		
High range	1200k	350k	3500	1.0	3300k	7900k	17000	4.4		

NEP = GB national electric production. Source: Adapted from BERR and DfT (2008).

"'dash' to electric looks more like a 'brisk stroll" (Marsden and Hess, in J&P, 2011, p.225)

SOCIAL DIMENSIONS

Trust for energy services...

Source: Platchkov et al, 2011, EPRG WP1122.

The social acceptability of DSM...

Source: Platchkov et al, 2011, EPRG WP1122.

Barriers to local solutions...

- Upfront capital costs
- Long payback periods
- Increased risk
- Hidden transaction costs
- Complex subsidy system
- Political lock in

- Insufficient 'know how'
- Policy restrictions
- Principal-agent problems
- Consumer preference
 problems
- Local environmental opposition

Fuel poverty is problem for pricing policy...

Table 12.4 Households in fuel poverty 1996–2010, UK, millions of households

	96	98	01	02	03	04	05	06	07	08#	09#	10#
Households in fuel poverty	6.5	4.8	2.5	2,2	2.0	2.0	2.5	3.5	4.0	4.5	5	4.6
Vulnerable* households in fuel poverty	5.0	3.5	2.0	1.8	1.5	1.4	2.0	2.75	3.25			

estimates from Neighbourhood Energy Action (House of Commons Business and Enterprise Committee, 2008b; NEA, 2009; Fuel Poverty Advisory Group, 2010).
* This measure of vulnerability is the one defined in the fuel poverty policy, see footnote 3. Source: Fuel Poverty Advisory Group (2010).

Vulnerable household = any household with a child, an older person or someone receiving state benefits (75% of households)

Source: Waddams Price, in J&P, 2011, p.307.

Characteristics of fuel poor...

Mean values	INCOM	E (£ p.a.)	ENER	GY (£ p.a.)	AVERAGE AGE	AVERAGE AGE HHSIZE CHILDREN ROOM			
Whole sample	25,671		728		44	2.5	0.6	4.4	100
Whole sample, fuel poor	6,797	(26.5)*	1,021	(140.3)	49	2.0	0.5	1.8	8.06
Low Income	8,178		624		44	1.8	0.3	1.6	7.27
Low Income, fuel poor	5,830	(71.3)	960	(153.8)	43	2.1	0.5	1.8	2.16
Retired	14,839		620		70	1.6	0.0	4.1	27.12
Retired, fuel poor	6,207	(41.8)	876	(141.2)	72	1.3	0.0	4.1	3.05
Supported	14,879		713		37	2.6	0.7	3.8	6.25
Supported, fuel poor	6,211	(41.7)	954	(133.7)	40	1.9	0.5	3.6	1.22
Female single	15,459		783		19	3.0	1.7	1.3	5.92
Female single, fuel poor	6,996	(45.3)	1,073	(137)	17	2.9	1.8	4.1	1.25

Table 13.1 Mean values for different household types

* Numbers in brackets: percentages of income (energy spending) of different groups of fuel-poor households in relation to overall income (energy spending) in different groups of households, e.g. 26.5 = (6,797/25,671) * 100. Source: BHPS survey data.

Source: Jamasb and Meier, in J&P, 2011, p.329.

POLICY AND REGULATION

National DSM strategies...

- Normative:
 - Appliance controls
 - Building codes
 - Energy efficiency obligations
- Informative:
 - Mandatory labels and certification
 - Mandatory audits
- Economic instruments:
 - Energy performance contracting

- Financial and incentive based measures
 - Taxation, subsidies and grants
 - Public benefit charges
 - Utility based programmes
- Voluntary agreements and partnerships:
 - Labelling and certification
 - Negotiated agreements
- Information and capacity building:
 - Awareness raising
 - Detailed billing and disclosure

Source: Brophy Haney et al., in J&P, 2011, p.357-358. W CAN

UNIVERSITY OF Electricity Policy CAMBRIDGE Research Group

Regulation needs to anticipate demand...

Figure 15.5 Primary substations risk level in 2010, 2015 and 2020. *Scale:* 1:1,500,000.

Figure 15.5 (cont.)

Source: Jamasb and Marantes, in J&P, 2011, p.396-397.

Higher building standards can help...

Figure 16.10 Delivered energy (kWh/m² p.a.) by fuel type for semi-detached dwelling to different standards.

Source: Clarke et al., in J&P 2011, p.418.

Pareto improvements exist...

Figure 18.4 Changes in average demand during weeks on autumn clock changes.

GMT+1 in autumn: peak demand down 4.3%, energy -0.32% in November, total annual demand -450 GWh, annual CO2 -0.375mt. Source: Chong et al., in J&P, 2011, p.454-455.

Conclusions 1

• Innovation needed on the demand side.

• New business models not clear.

• Liberalised market a premise for DSM.

• Social factors important: both in terms of acceptability and energy poverty.

Conclusions 2

- A new conception of demand
- Multifaceted as users, customers, and citizens
- Based on:

Economic incentives and insruments,

- ➤ Technological solutions, and
- Provision of information.
- Empower users to control their energy use and spending rather than anticipate uniform behaviour
 UNIVERSITY OF Electricity Policy Research Group

Thank you!

