

International experience in local electricity markets for the procurement of flexibility services

Karim L Anaya

Energy Policy Research Group Cambridge Judge Business School, University of Cambridge

> IAEE Online Conference 08 June 2021

About this Study

Joint work with Michael Pollitt and colleagues from Project MERLIN

With thanks to distribution utilities/ESOs (Ausgrid, Avacon, Enedis, Liander, NGESO, Stedin, Tennet, Tepco, UK Power Networks, Western Power Distribution), ENA UK, FfE, NYSDPS, Silicon Grid, energy experts.

MERLIN = Modelling the Economic Reactions Linking Individual Networks: Is a BEIS funded innovation project, under the <u>Power Forward Challenge</u>: <u>Canada-UK Joint Challenge on Smart Energy Systems</u>.

Project reports published at SSEN website. https://project-merlin.co.uk

This presentation draws on the first and second report:

- The <u>first</u> of which <u>compares 13 use cases of DNO/DSO</u> to procure flexibility
- The <u>second</u> makes recommendations of <u>what can be learnt from the cases</u>
- The <u>third</u> identifies <u>key regulatory aspects for the development of local flexibility markets in 7 jurisdictions
 </u>
- The fourth (forthcoming) measures the value of procuring flexibility (CBA) under key scenarios

Scope

- Selection of Use Cases (13 in total) from 7 jurisdictions
- Discussion of latest projects/initiatives (from 2017 onwards), with a combination of demonstrators (including proof of concept) and business as usual (BAU)
- With diversity in the type of services to be procured and flexibility providers
- With different approaches to market design

Scope

List of Use Cases

Country	project/initiative name	project leader(s)	type	start date	status
Australia	Battery Virtual Power Plant (VPP)	Ausgrid (DSO)	demonstrator	Jun-18	ongoing (Phase 1 completed)
France	Nice Smart Valley	Enedis (DSO)	demonstrator	Jan-17	end Dec. 2019
Germany	Avacon	Avacon (DSO)	demonstrator	Jan-17	end Dec. 2019
			demonstrator		
	The Altdorfer Flexmarkt (ALF)	FfE e.V.	(proof of concept)	2017	ongoing (end in 2020)
	Power Potential	NGESO (TSO)	trial	2017	ongoing (end in March 2021)
	Flexible Power	WPD (DNO)	BAU	Mar-19	ongoing
GB	Flexibility Services	UKPN (DNO)	BAU	Mar-19	ongoing
	Piclo Flex	Piclo	BAU	Mar-19	ongoing
	Cornwall Local Energy Market	Centrica	trial	May-19	ongoing (Phases 1 and 2 completed)
Japan	V2G Demonstrator Project Using EVs	Tepco (integrated	demonstrator		
	as Virtual Power Plant Resource	utility: DSO/TSO)	(proof of concept)	Jun-18	ongoing (end in 2020)
Netherlands	Dynamo	Liander (DSO)	BAU	Q4 2017	ongoing
				ongoing (potential extension to	
	GOPACS	6 DSOs	BAU	Jan-19	first DSOs: Liander, Stedin)
					ongoing (different European
Norway	Nodes	Nodes	BAU	2018	countries)

Method

Questions raised per each Use Case:

- What are the recent developments in smart architectures and solutions for the procurement of flexibility services?
- What are the different proposals for market design for the procurement of flexibility services?
- Why are new business models required to capture the value of flexibility?
- How do network operators value flexibility?
- What are the most and least common trends in the acquisition of flexibility services and what is still missing?
- Can regulatory changes help to unlock the value of flexibility for a more efficient grid management and service provision?

Comparison of Use Cases

		product/service to	6 H.W.			use of maximum prices, ranges (market-based	
Country	Use Case	be traded/tested	flexibility providers	aggregators	price rule	only)	remuneration scheme
Germany	Avacon	distribution grid constraint (congestion)	residential flexible loads (heat pumps, storage heaters) and generation assets (solar PV)	no	regulated prices (non market- based)	not applicable	(1) availability/others: Flex loads (a discount of around 57% of grid charge), (2) utilisation: DER compensated in line with loss of production
	The Altdorfer Flexmarkt (ALF)	constraint management (with short and long term products)	PV systems, heat pumps, electric vehicles, and storage systems, such as night storage heaters, home batteries	optional (short term), no (long term)	short term: pay-as-bid, long term: regulated prices (customers)	not defined yet	(1) short term: utilisation according to contracted power and offered price, (2) long term: lump-sum payment (i.e. yearly)
	Power Potential (NGESO)	reactive and active power	PV systems, wind turbines, CHP, biogas plants, etc	optional	pay-as-bid (wave 2)	no	utilisation (active and reactive power) and availability (reactive power)
	Flexible Power (WPD)	flexibility services (several)	PV systems, wind turbines, CHP, biogas plants, storage systems, flexible loads	optional	pay-as-bid (with regulated prices)	yes	availability (secure, dynamic), utilisation (secure, dynamic, restore); with maximum prices (£300/MWh secure, dynamic; £600/MWh restore)
	Flexibility Services (UKPN)	flexibility services (several)	PV systems, wind turbines, CHP, biogas plants, storage systems, flexible loads	optional	HV: pay-as-bid, LV: regulated price	yes (range per site)	availability (secure), utilisation (secure, dynamic), service fee (sustain: £47.58/kW/year). Range (with lower and upper values) regarding total price for HV (secure)
	Piclo Flex	flexibility services (several)	PV systems, wind turbines, CHP, biogas plants, storage systems, flexible loads	optional	pay-as-bid	yes (based on each DNO's requirements)	utilisation and/or availability depending on the service
	Cornwall Local Energy Market	flexibility services (several)	diesel generators, gas turbine, flow battery, domestic battery clusters, ice manufacturer	optional, phase 1 (Kiwi Power)	phase 1: pay-as-bid (with regulated prices), phase 2: pay- as-clear	yes (Phase 1)	phase 1: utilisation, phase 2: utilisation, availability (reservation). Regulated price up to £300/MWh (combined) in phase 1

Comparison of Use Cases

		product/service to				use of maximum prices, ranges (market-based	
Country	Use Case	be traded/tested	flexibility providers	aggregators	price rule	only)	remuneration scheme
		constraint management and voltage constraints		required (Reposit			only dispatch (10kW battery with 10-15 dispatch events can get
Australia	· ·	(phase 2)	residential battery systems	Power)	regulated prices (customers)	not applicable	paid between \$90-\$135 per year)
			hybrid systems (residential hybrid boilers, CHP commercial building, hybrid rooftop),				(1) availability/others: for aggregators depending on the Use Case; for customers: fixed/variable amounts to
		distribution grid	flexible customers (residential,	required (EDF,	pay-as-bid (aggregator),	not directly but subject to the	participate in the trial; (2)
France	Nice Smart Valley	constraint (congestion)	industrial)	Engie)	regulated prices (customers)	value of flexibility set by Enedis	utilisation: for aggregators free
	V2G Demonstrator	Replacement Reserve -					
Japan		for FIT ("RR-FIT") due to		required (Hitachi			RR-FIT: (1) paid for both delta-
	as Virtual Power	network congestion,		Solutions,			kW(availability)(2) and
	Plant Resource	voltage constraints	EV batteries (V2G-VPP)	Shizuoka Gas)	pay-as-bid	no	kWh (utilisation).
		congestion, grid management, balancing	PV systems, wind turbines, CHP, biogas plants, storage systems,				
Norway	Nodes	services	etc	optional	pay-as-bid	no	utilisation (dispatch), availability
The Netherlands	Dynamo	constraint management (congestion) constraint management (congestion) , TSO-DSO	Lidl (with cold store and battery at the distribution centre), Van del Valk (heat pump) PV systems, wind turbines, CHP, biogas plants, storage systems,	required (Scholt Energy)	regulated price (aggregator) pay-as-bid (trading parties), TSO/DSO pay a spread (difference between buy and	not applicable	availability and utilisation. High ratio availability/utilisation (0.9)
	GOPACS	coordination	etc	optional	sell order)	no	dispatch (utilisation)

Main findings

Smart architectures and solutions

Different bespoke and third-party platforms in use

Integrated within DSOs, independent platforms or aggregators

Use of DERMS, SGH, SMGW, platform for ancillary services (PAS)

Innovation in clearing solutions too

Market design for flexibility services

Different procurement methods and pricing rules

A combination of pay-as-bid, pay-as-clear, with some indication of regulated prices

Different combinations of remuneration schemes

Different set of flexibility services with some level of standardization

Penalties for non-delivery in the form "loss of revenue"

New business models

Different channels to procure flexibility

Aggregators are playing an important role

Their participation can be compulsory or optional

Independent platforms integrated within existing markets, examples of coordination platforms

Main findings

The value of flexibility

Different ways to value flexibility

From regulated prices to free ones (full market-based)

Use of fixed/maximum rates, ranges (based on CBA)

Can be remunerated with a single or a combination of payments

Proposal of common methodology in GB

Most and less common trends

Most:

to solve congestion, diverse range of technologies, multiproduct, aggregated flexibilities

Less:

pay-as-clear, procurement of ancillary services (reactive power), Gopacs with "intraday congestion spread", Piclo Flex (full DSOs participation)

The role of regulation

Can help in different ways

Supportive regulatory environment is crucial

Encourage DSOs to experiment, to opt for flexibility if it is more cost efficient, to enable digitalisation and better data management, to set clear roles, etc.

Conclusions

- Smart architectures and solutions should be easy to understand and access, with extensive stakeholder engagement.
- Clear rules regarding market design need to be adopted, ideally aligned with the current ones (i.e. set of parameters), in order to ensure consistency, standardisation and stakeholder buy-in.
- Need for a standard cost-benefit methodology with incorporation of social values, to be published and with indication of WTP, regulators may play a key role on it.
- In the identification of new business models, distribution utilities must identify the sources of value and market test them, with different approaches of partnership and supported by innovation funding.
- Little innovation in auction design, a reverse clock auction with customer revenue benefit target may be an option.
- Regulation can help to unlock the value of flexibility (e.g. innovation funding, price control regulatory regime, etc.)

References

- •AER (2018), Application guidelines. Regulatory investment test for distribution. Australian Energy Regulator, Dec. 2018.
- Alliander (2019), Annual Report 2018. Moving forward together. Alliander, Feb. 2019.
- •Anaya, K., Pollitt, M. (2020), A review of international experience in the use of smart electricity platforms for the procurement of flexibility services (Part 1 and Part 2), Scottish and Southern Electricity Networks
- •Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, Jenkins, D., McCallum, P., Peacock, A. (2019), Blockchain technology in the energy sector: A systematic review of challenges and opportunities. *Renewable and Sustainable Energy Reviews* 100, 143-174.
- •ARENA (2019), Demand Response RERT Trial Year 1 Report. Australian Renewable Energy Agency, Mar. 2019.
- •Ausgrid (2019), Ausgrid's Battery Virtual Power Plant. Phase 1 Summary. Aug. 2019.
- •BMWI (2018), SINTEG-Smart energy showcases. A programme for funding showcase regions for the energy supply of the future.
- •Dumbs., C., Jarry, G., Willems., M., Gross, T., Larsen, A., Wagner, T. (2019), Market models for local flexibility procurement: InterFLEX' experience and main challenges. Paper 2166 presented at the 25th International Conference on Electricity Distribution (CIRED), Madrid, 3-6 June 2019.
- •EC (2019), European Smart Grids Task Force Expert Group 3. Annex: Description of Use Cases. Annex to Final Report "Demand Side Flexibility Perceived barriers and proposed recommendations". European Commission, April 2019.
- •ENA (2015), Active Network Management Good Practice Guide. Energy Networks Association.
- •Engelbrecht, D., Schweer, A., Gehrcke, R., Lauen, E., Deuchert, B., Wilczek, J., Schuster, H., Buchner, J. (2019), Demonstration of a Market-based Congestion Management using a Flexibility Market in Distribution Networks. Presentation made at International ETG Congress, ETG Symposium, 08-09 May 2019, Esslingen, Germany.
- •ETPA (2019), Frequently Asked Questions GOPACS. May 2019.
- •Enedis ADEeF (2017), Valorisation economique des Smart Grids. Contribution des gestionnaires de reseau public de distribution. Enedis and Association des Distributeurs d'Electricite en France.
- •FFE (2018), ALF Altdorfer Flexmarkt. KONZEPTBESCHREIBUNG, ZIELSETZUNG, FUNKTIONSWEISE UND PROZESSE DES ALTDORFER FLEXMARKTS. Forschungsstelle für Energiewirtschaft e.V. (In German), Dec. 2018.
- •GOPACS (2019), IDCONS Product Specification. Version number 1.0. Grid operator platform for congestion solutions, January 2019.
- •Heilmann, E., Klempp, N., Wetzel, H. (2020), Market design of regional flexibility markets: A classification metric for flexibility products and its application to German prototypical flexibility markets. Joint Discussion Paper Series in Economics No 02-2020. University of Marburg, Feb. 2020.
- •InterFLEX Avacon (2019b), Demonstration report including KPI-Evaluation for all use cases. Version 1.0. Deliverable D5.10. Dec. 2019.
- •InterFLEX Enedis (2019a), Demonstration results based on the KPI measurements and lessons learnt from the demonstrations, V1.0, Deliverable D9.3, Dec. 2019.
- •InterFLEX-Enedis (2019b), Contract principles between DSO and aggregators and services lists from an aggregator to a DSO. Deliverable 9.4. V1.0. June 2019.
- •InterFLEX-Enedis (2019c), Simulation results for further extrapolation of Use Case 3. V1.0. Deliverable D9.5. Dec. 2019.
- •JEPIC (2019), The Electric Power Industry in Japan 2019. Japan Electric Power Information Center.
- •Lehmbruck, L., Kretz, J., Aengenvoort, J. and Sioshansi, F. (2020), Aggregation of front- and behind-the-meter: the evolving VPP business model, In F.Sioshansi (ed.), Behind and Beyond the Meter: Digitalization, Aggregation, Optimization, Monetization, Academic Press; pp.211-232.
- •NGESO-UKPN (2019a), DER Framework Agreement. Published on Oct. 2019.
- •NGESO-UKPN (2019b), Customer Readiness Report and Performance of the Technical Solution is a Controlled Environment. SDRC 9.4. Power Potential, Nov. 2019.
- •Nodes (2018), A fully integrated marketplace for flexibility White Paper. Nodes.
- •Ofgem (2019), Ofgem's Future Insights Series. Flexibility Platforms in electricity markets. Office of Gas and Electricity Markets, Set. 2019.
- •Origami (2019), Analysis of relevant international experience of DSO flexibility markets. Transition Project Deliverable, Origami, Aug. 2019.
- •Petrovic, N., Strezoski, L, Dumnic (2019), Overview of software tools for integration and active management of high penetration of DERs in emerging distribution networks. IEEE EUROCON 2019 18th International Conference of Smart Technologies, Novi Sad, Serbia, 2019, pp. 1-6.
- •Radecke, J., Hefele, J., Hirth, L. (2019), Markets for Local Flexibility in Distribution Networks, ZBW Leibniz Information Centre for Economics, Kiel, Hamburg, Oct. 2019.
- •Robinson, D. (2020), What market design, fiscal policy, and network regulations are compatible with efficient behind the meter investments?, In F.Sioshansi (ed.), Behind and Beyond the Meter: Digitalization, Aggregation, Optimization, Monetization, Academic Press; pp.361-379.
- •Schittekatte, T., Meeus, L. (2019), Flexibility markets: Q&A with project pioneers. EUI Working Paper RSCAS 2019/39. Robert Schuman Centre for Advanced Studies. Florence School of Regulation, May 2019.
- •SEPA (2019), DERMS Requirements. Version 2.0. Smart Electric Power Alliance, Feb. 2019.
- •SPEN (2019), Flexibility Services Provider Questions. Network Planning and Regulation Flexibility Services. Scottish Power Energy Networks, Dec. 2019.
- •SSEN (2019), SSEN Strategy Paper CMZ Services. Service Types and Payments. Scottish & Southern Electricity Networks.
- •UKPN (2020c), Flexibility Services Procurement 2020. Appendix 6-Flexibility Zones Revenue Ranges. UK Power Networks Limited, Feb. 2020.
- •WPD (2020), Visibility Plugs and Socket. Dissemination Webinar. Western Power Distribution, March 2020.
- Zhang, C., Wu, J., Long, Ch., Cheng, M. (2017), Review of Existing Peer-to-Peer Energy Trading Projects. Paper presented at the 8th International Conference on Applied Energy ICAE2016.

Q&A

Thank you!