

Transmission Planning Under Uncertainty: A Stochastic Two-Stage Modelling Approach

Harry van der Weijde

VU Amsterdam & EPRG, University of Cambridge | hweijde@feweb.vu.nl

Benjamin F. Hobbs

Johns Hopkins University, EPRG, & CAISO| bhobbs@jhu.edu

INFORMS Annual Meeting Austin, Nov. 8, 2010

Making networks fit for renewables ...

www.eprg.group.cam.ac.uk

Overview

- The problem
- Existing studies
- Our model
 - How it works
 - Data it needs
 - Data sources + assumptions
- Some results
- Conclusions

The Problem: Hyperuncertainty! What's a Poor Transmission Planner to do?

SUPERGEN FLEXNet

Dramatic changes a-coming!

- Renewables
 - How much?
 - Where?
 - What type?
- Other generation
 - Centralized?
 - Distributed?
- Demand
 - New uses? (EVs)
 - Controllability?
- Policy

Do these uncertainties have implications for transmission investments *now*?

Making networks fit for renewables ...

www.eprg.group.cam.ac.uk

The problem, Cont.

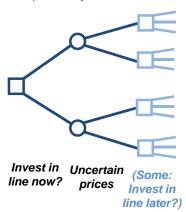
- Transmission planning
 - Generators respond: multi-level
 - Decisions can be postponed: multi-stage
 - Uncertainties & variability: stochastic

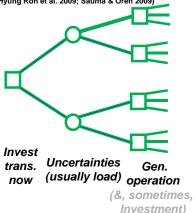
Important questions:

- Optimal strategy under uncertainty?
- Value of information? (EVPI)
- Cost of ignoring uncertainty? (ECIU)
- Option value of being able to postpone?

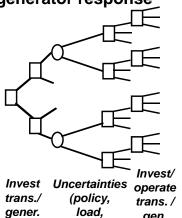
Deterministic planning can't answer these!

Stochastic can!


Decision making under uncertainty


Real options analysis of single lines, usually based on exogenous price processes (Hedman et

al. 2005; London Economics 2003; Fleten et al. 2009; Parail 2009)


Single-stage transmission planning under uncertainty with generator

response (Awad et al. 2009; Crousillat et al. 1993; De la Torre et al. 1999; Oolomi Buygi et al. 2004; Oliveira et al. 2007; Hyung Roh et al. 2009; Sauma & Oren 2009)

Two-stage transmission planning under uncertainty with generator response

- Ours

technology)

now

gen.

later

Making networks fit for renewables ...

www.eprg.group.cam.ac.uk

Our model: timeline SUPERGEN FLEXNet Stage 1 Stage 2 2010 2020 2030 3. Dispatch 6. Dispatch 4. Transmission 1. Transmission investment investment 5. Generation 2. Generation investment investment

Objective: min total costs (investment + generation) s.t. power flow constraints, wind availability, build limits, renewables targets

Structure of 2 Stage Programming

- Math programming with recourse
 - scenarios s=1,2,..,S, each with probability PRs

- Simplest: Assume 2 decision stages:
 - 1. Choices made "here and now" before future is known
 - E.g., investments in 2010
 - These are x¹
 - 2. "Wait and see" choices, which are made after the future s is known.
 - E.g., dispatch/operations, investments in 2020
 - These are x^{2s} (one set defined for each scenario s)
- Model:

MIN
$$C^1(x^1) + \Sigma_s PR^s C^{2s}(x^{2s})$$

s.t. $A^1(x^1) = B^1$
 $A^{2s}(x^1, x^{2s}) = B^{2s} \forall s$

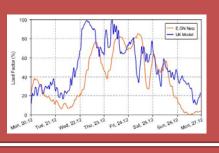
Making networks fit for renewables ...

www.eprg.group.cam.ac.uk

Some assumptions

- Alignment of generation and transmission objectives
 - e.g., nodal pricing + perfect competition
- Generation
 - No unit commitment or dynamic constraints/costs
- Demand:
 - No short-term demand flexibility
- Renewables targets met in most efficient way

Data necessary

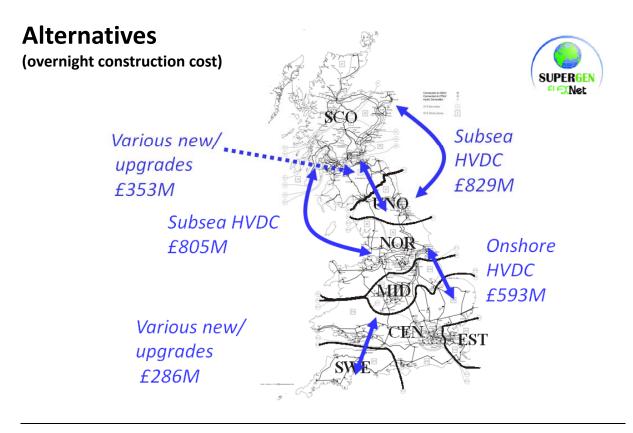


regions + transmission constraints + losses

generator types + current capacities + maximum build limits + costs

wind output and demand time series (1 year) + interconnector flows

investment alternatives


scenarios
(2020, 2030) &
probabilities:
generation costs
(incl. carbon price),
transmission
investment costs,
demand,
renewable targets,
nuclear feasibility

www.eprg.group.cam.ac.uk

Data sources

- Regional wind output: Neuhoff et al. (2007)
- Hydro output: Duncan (2010)
- Regional demand data: National Grid
- BritNed Flows: Parail (2010)
- Maximum build limits: Various
- Regions + trans. constraints: NG 7-year statement (2009)
- Transmission losses: own calculations
- Investment alternatives + costs: KEMA (2009)
- Generation costs: NEA and IEA (2005), US DOE, own calculations
- Scenarios: Various (Discovery, LENS, Redpoint, etc.)

Making networks fit for renewables ...

www.eprg.group.cam.ac.uk

Scenarios

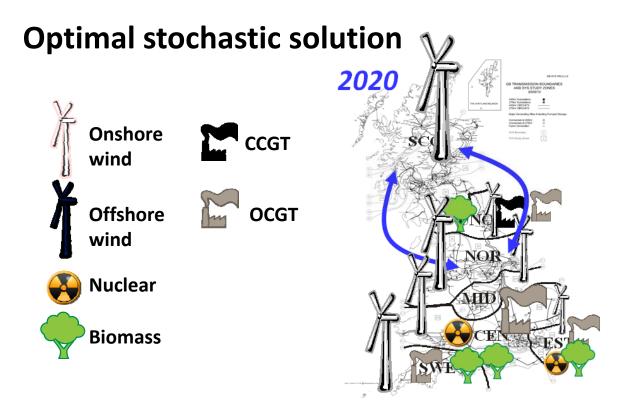
11

	Gen. investment cost	Gen. variable cost	Trans. investment cost	Demand	CO ₂ price	Others
Status Quo		CCGT/OCGT/DG: +		+	+/-	No Renewable Target
Low cost DG	Distributed G: - -	CCGT/OCGT: - DG:		+	++	RT: + Nuclear replacement only
Low Cost Large Scale Green	Renewables :	CCGT/OCGT/DG: ++			+++	RT: +++
Low Cost Conventional	Conventional: -	CCGT/OCGT/DG: -		++	+	No RT
Paralysis	All except offshore: +++	CCGT/OCGT/DG: +	Onshore: +++ Others +	++	++	RT: + Nuclear replacement only
Techno+	All : -	CCGT/OCGT/DG: +	-	++	++	RT: ++

Making networks fit for renewables ...

12

Some results

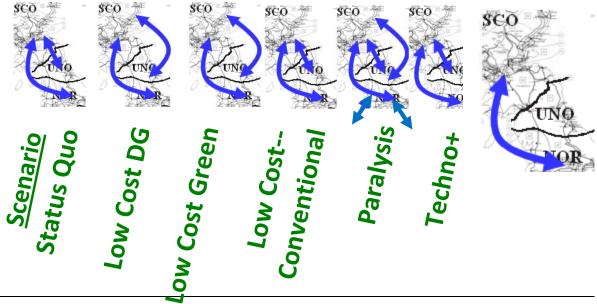

Disclaimer: the following results are preliminary and based on restrictive assumptions.

They cannot be used to evaluate proposed transmission investments.

Making networks fit for renewables ...

1

www.eprg.group.cam.ac.uk



Making networks fit for renewables ...

Cf. Traditional robustness analysis

2020 Installations by Scenario

www.eprg.group.cam.ac.uk

Making networks fit for renewables ...

1 -

Value of perfect information

- How much average savings if we knew which scenario would happen?
 △=
 - 1. Solve stochastic model

EVPI

- 2. Solve deterministic model for each scenario
- 3. Calculate probability-weighted average of (2)
- Results:

- For gen & transmission: £3,729M (3%)

- For trans alone: £101M (0.1%)

Cost of ignoring uncertainty

- How much would costs go up if we naively plan for one scenario but other scenarios can happen?
 - 1. Solve stochastic model
 - 2. Solve naïve (deterministic) mode for each scenario
 - 3. Solve stochastic model, imposing first-stage transmission decisions from step 1

Making networks fit for renewables ...

FCIU

www.eprg.group.cam.ac.uk

Cost of ignoring uncertainty

Scenario planned for

ECIU (Transmission)

(Present worth)
Status Quo £432M @

Low Cost DG £0

Low Cost Large Scale Green £29M

Low Cost Conventional £196M

Paralysis £221M **@** Techno+ £0

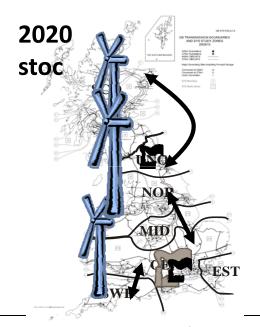
Average £146M = 0.12% of expected costs (stochastic solution)

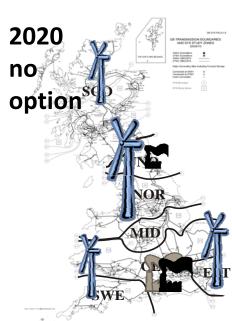
Making networks fit for renewables ...

18

Value of flexibility

- How much would costs go up if we had to make all decisions now? Δ = Value of **Flexibility**
- 1. Solve stochastic model
- 2. Solve stochastic model, imposing same transmission expansion plan for aff scenarios


Making networks fit for renewables ...


www.eprg.group.cam.ac.uk

Option value of waiting

Example: Paralysis

Making networks fit for renewables ...

20

Value of flexibility

- Option value (transmission only):
 - = £102M present worth= 0.08% of total costs
 (stochastic)

Making networks fit for renewables ...

21

www.eprg.group.cam.ac.uk

Conclusions

- For transmission planning:
 - Ignoring risk has quantifiable economic consequences
 - Approach useful for policy/planning questions
- Future work
 - US Application
 - Integration with OPF via decomposition?
 - Demand response
 - Bi-level formulation

Making networks fit for renewables ...

References

- E. O Crousillat, P. Dörfner, P. Alvarado, and H. M. Merrill, "Conflicting Objectives and Risk in Power System Planning," *IEEE Trans. Power Systems*, vol. 8, pp. 887-893, 1993.
- N. Duncan, Personal Communication, 2010.
- S. -E. Fleten, A. M. Heggedal, and A. Siddiqui, "Transmission Investment under Uncertainty: The Case of Germany-Norway," presented at the 1st International Ruhr Energy Conference, Essen, Germany.
- K. W. Hedman, F. Gao, and G. B. Sheble, "Overview of Transmission Expansion Planning Using Real Options Analysis," in *Proc. IEEE North American Power* Symposium, 2005.
- J. Hyung Roh, M. Shahidehpour, and L. Wu, "Market-Based Generation and Transmission Planning With Uncertainties," *IEEE Trans. Power Systems* vol. 24, pp. 1587-1598, 2009.
- KEMA "Assessment of overall robustness of the transmission investment proposed for additional funding by the three GB Electricity Transmission Owners", 2009.
- London Economics, London, "Economic Evaluation of the Path 15 and Path 26 Transmission Expansion Projects in California".
- National Grid, "Seven-Year Statement", 2009.

Making networks fit for renewables ...

23

www.eprg.group.cam.ac.uk

References (cont'd)

- NEA and IEA, "Projected Costs of Generating Electricity 2005 Update", Nuclear Energy Agency and International Agency, OECD, Paris, France, 2005.
- K. Neuhoff, J. Cust, L. Butler, K. Keats, H. Hoexter, A. Kreckzo, G. Sinden, and A. Ehrenmann, "Space and Time: Wind in an Investment Planning Model". EPRG Working Papers 0603, 2006.
- G. C. Oliveira, S. Binato, and M. W. Pereira, "Value-Based Transmission Expansion Planning of Hydrothermal Systems Under Uncertainty," *IEEE Trans. Power Systems*, vol. 22, pp. 1429-1435, 2007.
- M. Oloomi Buygi, M. Shahidehpour, H. M. Shanechi, and G. Balzer, "Market Based Transmission Planning Under Uncertainties," *Proc. 2004 Int. Conf. on Probabilistic Methods Applied to Power Systems*, pp. 563-568.
- V. Parail, "Can Merchant Interconnectors Deliver Lower and More Stable Prices? The Case of NorNed," EPRG Working Papers 0926, Nov. 2009.
- V. Parail, "Properties of Electricity Prices and the Drivers of Interconnector Revenue", 2010.
- E. E. Sauma, and S. S. Oren, "Proactive Planning and Valuation of Transmission Investments in Restructured Electricity Markets," *Journal of Regulatory Economics* 30, pp. 261-290, 2006.