A strategic perspective on competition in international gas markets

Robert A. Ritz

University of Cambridge

rar36@cam.ac.uk

October 2014

Competition in natural gas markets

- Gas markets fundamentally changed over last 10 years
 - Traditionally pipelines projects backed by long-term contracts
 - High investment costs & high degree of asset specificity
 - Now increasingly trade in seaborne liquefied natural gas (LNG)
 - Greater flexibility to export gas to different regions
- Gas importing regions: Varying situations & price levels
 - Asia/Japan: Heavy LNG dependence & high prices (Fukushima)
 - Europe: Broader import mix & mid-level prices (security of supply)
 - US: No significant imports & low gas prices (shale gas)
- ⇒ Which producers have a competitive advantage, and why?
 - How is competition affected by demand & supply shifts?
 - What are the implications for consumer welfare?

Overview of the model & results

Stylized model of global gas market competition

- Two producers & two regions
 - Multi-market firm sells to both regions (Qatar LNG to Europe & Asia)
 - Single-market firm sells only to one (Gazprom piped gas to Europe)
- Capacity investment followed by quantity competition

Main results from the analysis

- Single-market producer enjoys a structural competitive advantage
 - Gazprom's focus on European market as a source of strength
- But various market developments likely to erode this advantage
 - {Fukushima accident, US LNG exports, EU energy policy}
 - \rightarrow Favour Qatar/LNG & often hurt European gas buyers

Related literature

- Models of gas market competition
 - Golombek-Hoel (1987); Egging-Gabriel-Holz-Zhuang (2008); Holz-von Hirschhausen-Kemfert (2008); Chyong-Hobbs (2014); Ritz (2014)
- Multi-market oligopoly & 3rd degree price discrimination
 - Bulow-Geneakoplos-Klemperer (1985); Cowan (2012); Shelegia (2012)
- Ocst pass-through as an economic tool
 - Andersen-Renault (2003); Weyl-Fabinger (2013)
- Meterogeneous firms in international trade
 - Melitz (2003); Mrázová-Neary(2013)

Setup of the model

Two producers:

- Firm 1 sells both into markets A and B
- Firm 2 can sell only into market A

Demand conditions:

- $p^A(q_1^A, q_2^A) = \alpha \beta(q_1^A + q_2^A)$
- $p^B(q_1^B)$ with curvature $\zeta^B \equiv (-q_1^B p_{qq}^B/p_q^B) < 1$ (log-concave)

Two stages:

- **1** Firms invest in production capacities k_1, k_2 (unit cost r > 0)
- 2 Firms make output decisions (unit costs c_1, c_2)
 - Assume both producers are capacity-constrained
 - Assume no third-party price arbitrage between markets
- ⇒ Subgame-perfect Nash equilibrium (interior solution)

Stage 2: Output decisions

- Binding capacity constraints $\Longrightarrow q_1^A + q_1^B = k_1$ and $q_2^A = k_2$
- Producer 1's optimal strategy equalizes (net) marginal revenues

$$MR_1^A(q_1^A, q_2^A) - c_1 = MR_1^B(q_1^B) - c_1 > 0$$

 $\implies MR_1^A(q_1^A, k_2) = MR_1^B(k_1 - q_1^A)$

- Output decisions are affected by capacity investment
 - More own capacity raises own production, $\partial q_1^A/k_1>0$
 - **Key point**: Higher capacity by producer 2 induces producer 1 to cut output, $\partial q_1^A/k_2 < 0$ (but not vice versa)
- In sum, given $\mathbf{k}=(k_1,k_2)$, output choices $q_1^A(\mathbf{k}),\ q_1^B(\mathbf{k}),\ q_2^A(\mathbf{k})=k_2$

Stage 1: Capacity decisions

Producer 1: Capacity choice solves

$$\max_{k_1 \in \mathbb{R}_+} \left\{ R_1^A(q_1^A(\mathbf{k}), q_2^A(\mathbf{k})) + R_1^B(q_1^B(\mathbf{k})) - rk_1 - c_1(q_1^A(\mathbf{k}) + q_2^A(\mathbf{k})) \right\}$$

- First-order condition: $0 = MR_1^A \frac{\partial q_1^A}{\partial k_1} + MR_1^B \frac{\partial q_1^B}{\partial k_1} r c_1 \left(\frac{\partial q_1^A}{\partial k_1} + \frac{\partial q_1^B}{\partial k_1} \right)$
- Since $MR_1^A=MR_1^B$ and $\frac{\partial q_1^A}{\partial k_1}+\frac{\partial q_1^B}{\partial k_1}=1\Longrightarrow MR_1^A=MR_1^B=r+c_1$
- \implies Monopoly solution in market $B\colon \widehat{q}_1^B=q_m^B$ and so $\widehat{q}_1^A=\widehat{k}_1-q_m^B$

Producer 2: Capacity choice solves

$$\max_{k_2 \in \mathbb{R}_+} \left\{ R_2^A(q_1^A(\mathbf{k}), q_2^A(\mathbf{k})) - rk_2 - c_2 q_2^A \right\}$$

• First-order condition: $0 = MR_2^A \frac{\partial q_2^A}{\partial k_2} + \frac{\partial R_2^A}{\partial q_1^A} \frac{\partial q_1^A}{\partial k_2} - r - c_2 \frac{\partial q_2^A}{\partial k_2}$

Strategic effect, cost pass-through & market power

Strategic effect of producer 2's capacity choice

$$\lambda \equiv -\left(\frac{\partial q_{1}^{A}}{\partial k_{2}}\right) = \frac{\frac{\partial MR_{1}^{A}}{\partial k_{2}} - \frac{\partial MR_{1}^{B}}{\partial k_{2}}}{\frac{\partial MR_{1}^{A}}{\partial q_{1}^{A}} - \frac{\partial MR_{1}^{B}}{\partial q_{1}^{A}}} = \frac{\beta}{\left[2\beta + \left(-p_{q}^{B}\right)\left(2 - \xi^{B}\right)\right]} \in (0, \frac{1}{2})$$

- Firm 2 can induce firm 1 to cut back output in common market A
 - ullet Unless, in the limit, eta o 0 or $\left(-p_q^B
 ight)\left(2-\xi^B
 ight) o\infty$
- \implies Degree of monopoly power in market B key to analysis
 - Index of market power $(2-\xi^B)=1/
 ho^B$ where $ho^B\equiv dp_m^B/dc$
 - $\hbox{ High market power} \Longleftrightarrow \hbox{low cost pass-through:} \\ \hbox{Prices driven by willingness to pay, not costs}$
 - No necessary relationship with price elasticity of demand

Competitive advantage of "focused" firms

Measure of competitive advantage in terms of market shares

$$\frac{\widehat{q}_{1}^{A}}{\widehat{q}_{2}^{A}} = \frac{\left(2 - \lambda\right)\left(\alpha - r - c_{1}\right) - \left(\alpha - r - c_{2}\right)}{2\left(\alpha - r - c_{2}\right) - \left(\alpha - r - c_{1}\right)}$$

Proposition 1 Single-market firm 2 has a competitive advantage in market A over multi-market firm 1 (as long as $(c_2 - c_1)$ not too large).

- ullet Goes against standard result that low costs \Longleftrightarrow high market share
 - Standard result holds in all common (single-market) oligopoly models

⇒ Focused pipeline-based sellers (Gazprom) enjoy structural advantage over multi-market LNG sellers (Qatar)

Demand shock in market B ("Fukushima")

- Let $p^B(q_1^B, \theta)$ where $p_{\theta}^B > 0$ and let $\eta_{\theta}^B \equiv \left| rac{d \log p_{\theta}^B}{d \log q_1^B} \right|_{q_1^B = \hat{q}_1^B}$
- How does a demand shock in B affect competition in market A?
 - Only cross-market impact is via strategic effect $\lambda(\theta)$
 - Strategic effect $\lambda'(\theta) < 0 \Longleftrightarrow \frac{d}{d\theta} \left[-p_q^B \left(2 \xi^B \right) \right] > 0$
- Before that, how does a demand shock affect price & output?

Lemma 1 A small demand shock has the following equilibrium effects:

$$rac{d\hat{q}_1^B}{d heta} > 0 \Longleftrightarrow \eta_{ heta}^B > -1$$

$$rac{d\hat{
ho}_{1}^{B}}{d heta}>0\Longleftrightarrow\eta_{ heta}^{B}<1-\xi^{B}$$

⇒ "Obvious" first-order effects actually require additional structure...

Demand shock in market B ("Fukushima")

- Suppose demand rises from θ' to $\theta'' > \theta'$ (e.g., Fukushima)
- Strategic effect weakens $\lambda(\theta'') < \lambda(\theta') \iff$ Firm 2's competitive advantage declines \iff Consumer surplus in market A falls

Proposition 2 A demand shock leads to $\lambda(\theta'') < \lambda(\theta')$ if:

- (i) Cost pass-through in market B does not increase, $d\rho^B/d\theta \leq 0$
- (ii) Impact on consumers' WTP satisfies $\eta_{ heta}^B < -\xi^B/2$

[Grossly sufficient:
$$\xi^B < 0 \Leftrightarrow \rho^B < \frac{1}{2}$$
 and $p_{\theta q}^B \leq 0$]

- Result holds where firm 1 enjoys high market power in market B
 - Gas demand curves commonly assumed to be concave

⇒ Qatar benefits twice from Fukushima: Direct gains in Asian LNG market plus indirect strengthening of European position

Competitive entry in market *B* ("US LNG exports")

- ullet Let $p^B(q_1^B,q_f)$ and $s_1^B\equiv q_1^B/(q_1^B+q_f)\in (0,1)$
- $\bullet \ \, \mathsf{Strategic} \ \, \mathsf{effect} \ \, \mathsf{now} \ \, \lambda = \tfrac{\beta}{\left[2\beta + \left(-\rho_q^B\right)\left(2 \hat{\mathsf{s}}_1^B \xi^B\right)\right]} \in (\mathsf{0}, \tfrac{1}{2})$
- How does more entry in B affect competition in market A?

Proposition 3 Competitive entry in market B leads to $\lambda(q_f'') < \lambda(q_f')$ if:

- (i) Demand is concave/pass-through is "low" $\xi^B < 0 \Leftrightarrow \rho^B < \frac{1}{2}$
- (ii) Demand curvature is non-increasing, $\xi_q^B \leq 0$
 - \bullet Condition $\xi_q^B \leq 0$ plays similar role to $d\rho^B/d\theta \leq 0$ before
- \Longrightarrow European gas customers lose twice: Directly since US exports go elsewhere, plus indirectly due to softer competition
 - US LNG to Asia makes Qatar a stronger competitor in Europe

Demand shock in market A ("EU energy policy")

- EU energy policy can raise demand for natural gas
 - For example, cutbacks in EU renewables subsidies
- ullet To model this, vary demand parameters lpha and/or eta
 - Higher α : Higher WTP of existing gas customers
 - Lower β : Arrival of new gas customers (larger market size)

Proposition 4 "Higher demand" in market A raises firm 1's market share: (i) $\partial \left(\widehat{q}_1^A / \widehat{q}_2^A \right) / \partial \alpha > 0 \Longleftrightarrow c_1 > c_2$, and (ii) $\partial \left(\widehat{q}_1^A / \widehat{q}_2^A \right) / \partial \beta < 0$.

- Higher α helps higher-cost firm (profit margins expand)
 - Qatar's LNG costs > Russian pipeline costs
- Lower β alleviates multi-market effect (market B matters less)
- ⇒ Demand shifts due to EU policy help Qatar & hurt Gazprom

Some observations on Russian gas export strategy

Recent export diversification efforts

- Traditionally, Russian pipeline exports to European market
- Some recent efforts to diversify to the East (China pipeline deal)
 - \bullet LNG still only small share ($\leq 5\%)$ of exports (Shtokman LNG on hold)

⇒ Such diversification seems puzzling in light of above analysis...

Strategic impact of diversification?

- Key point: Gas pipelines cannot be redirected like LNG tankers
 - Eastern & Western pipelines are different capacities (route-specific)
 - Russian gas/LNG to Asia may hurt Gazprom's position in Europe
- Whatever its benefits, "flexible" diversification has a strategic cost

Conclusions

- Gazprom has had a structural advantage over LNG producers
 - Goes against conventional wisdom:
 Here Gazprom's European focus is a source of strength, not weakness
 - Fairly robust to changes in model specification/functional forms
- Past/future market developments erode competitive advantage
 - {Fukushima accident, US LNG exports to Asia, EU energy policy}: Favour LNG producers (Qatar) but often hurt European gas buyers
 - Relies on high market power/low cost pass-through in Asian LNG
- Russian gas export diversification may come at a strategic cost