
How Can We Use Scenarios? Planning Transmission Under Uncertainty

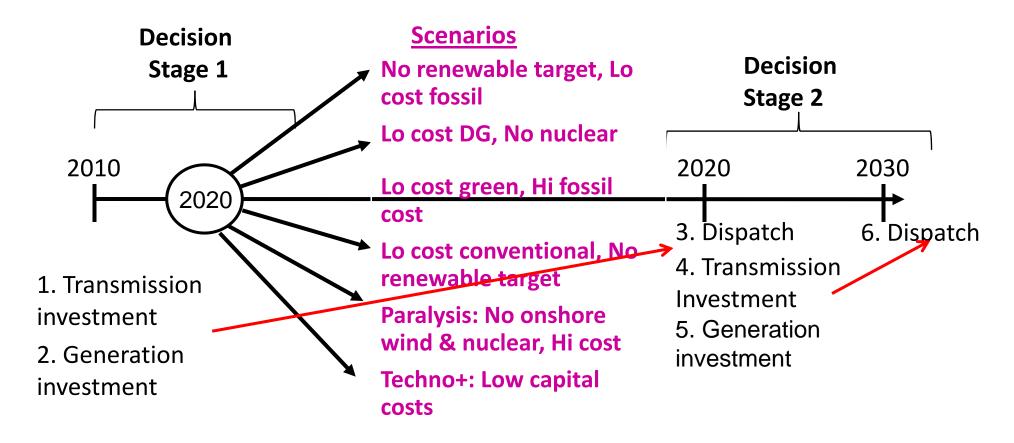
Benjamin F. Hobbs

EPRG, University of Cambridge
Whiting School of Engineering, Johns Hopkins University
Market Surveillance Committee, California Independent System Operator
bhobbs@jhu.edu

Harry van der Weijde

EPRG, University of Cambridge

Making networks fit for renewables ...


Questions

- Which actions are robust?:
 - Which attractive under all scenarios?
 - Optimal strategy considering all scenarios at once?
- Value of better forecasts?
- Cost of disregarding uncertainty?
- Value of options/flexibility?

Deterministic planning cannot answer!

Example: UK transmission infrastructure planning

Decision analysis with multiple scenarios

Objective: MIN social cost (investment + variable)

Subject to: Constraints on $\sim 10^6$ variables:

power flow, wind availability, build limits, renewables targets

Optimal stochastic solution

Onshore

2010

GB SYS FIGA.

GB TRANSMISSION BOUNDARIES
AND SYS STUDY ZONES
2010

400.V Substations
2/24V Substations
2/24V Substations
2/24V GROUNDS
2/24V G

Major Generating Sites Including Pun Connected at 400kV © Connected at 275kV ○ Hydro Generation ○

Disclaimer: the following results are preliminary and based on restrictive assumptions.

They cannot be used to evaluate proposed transmission investments.

Biomass

- Why? There's an option value to waiting.
- Cost of ignoring uncertainty: £0 to £432M