

Questions Addressed by Strategic Market Models

What might be the effect of policies concerning...

- <u>Generation structure</u> (mergers, ownership, distributed resources, entry...)
- <u>Transmission investment</u> (new lines ...)
- <u>Market rules</u>
 - Transmission pricing (taxes, congestion, counterflows, zonal ...)
 - Access (retail load, generators, arbitragers ...)
 - Environmental markets (green certs., CO2 trading ...)
- ...upon...
 - <u>Economic efficiency</u> (allocative & productive efficiency)
 - Income distribution (TSO revenues, profits, consumer surplus)
 - <u>Emissions</u>
- ...considering generator strategic behavior?
 - <u>Bidding</u>
 - <u>Capacity withdrawal</u>
 - <u>Manipulation of transmission</u> (deliberate congestion, decongestion)

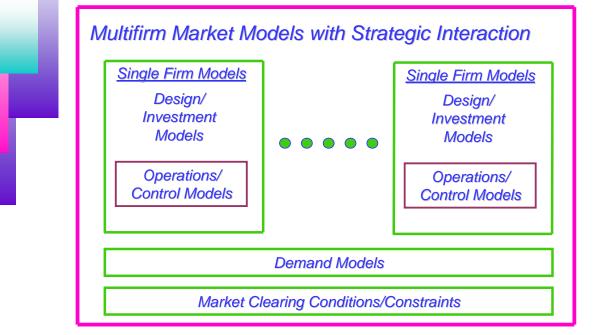
Course Outline

- I. Bottom-up Models of Markets: Philosophy
- II. Review of Operations & Planning Models
 - A. Dispatch
 - **B.** Generation mix
 - C. Linearized DC load flow

III. Perfect Competition Market Models

- A. Equivalency Result: Samuelson's Principle
- **B.** General Equilibrium Model
- **IV. Strategic Market Models**
 - A. Basic concepts
 - **B.** Simple Nash-Cournot example
 - C. Transmission-Constrained Cournot model
 - **D.** Advanced Models
- V. Conclusions

Overview of Lecture



I. "Process" or "Bottom-Up" Analysis: Company & Market Models

What are bottom-up/engineering-economic models? And how can they be used for policy analysis?

 $\stackrel{\Delta}{=}$ Explicit representation & optimization of individual elements and processes based on physical relationships

Process Optimization Models

Elements:

- Decision variables. E.g.,
 - Design: MW of new combustion turbine capacity
 - Operation: MWh generation from existing coal units
- Objective(s). E.g.,
 - Maximize profit or minimize total cost
- Constraints. E.g.,
 - Σ Generation = Demand
 - Respect generation & transmission capacity limits
 - Comply with environmental regulations
 - Invest in sufficient capacity to maintain reliability

Traditional uses:

- Evaluate investments under alternative scenarios (e.g., demand, fuel prices) (3-40 yrs)
- Operations Planning (8 hrs 5 yrs)
- Real time operations (<1 second 1 hr)

Bottom-Up/Process Models vs. Top-Down Models

- Bottom-up models simulate investment & operating decisions by an individual firm..
 - E.g., capacity expansion, production costing models
 - Individual firm models can be assembled into market models
- Top-down models start with an aggregate market representation (e.g., supply curve for power, rather than outputs of individual plants).
 - Often consider interactions of multiple markets
 - E.g., National energy models

Functions of Process Model: Firm Level Decisions

Real time operations:

- <u>Automatic protection</u> (<1 second): auto. generator control (AGC) methods to protect equipment, prevent service interruptions. (Responsibility of: Independent System Operator ISO)
- <u>Dispatch</u> (1-10 minutes): optimization programs (convex) min. fuel cost, s.t. voltage, frequency constraints (ISO or generating companies GENCOs)

Operations Planning:

- <u>Unit commitment</u> (8-168 hours). Integer NLPs choose which generators to be on line to min. cost, s.t. "operating reserve" constraints (ISO or GENCOs)
- <u>Maintenance & production scheduling</u> (1-5 yrs): schedule fuel deliveries & storage and maintenance outages (GENCOs)

Firm Decisions Made Using Process Models, Continued

Investment Planning

- <u>Demand-side planning</u> (3-15 yrs): implement programs to modify loads to lower energy costs (consumer, energy services cos. ESCOs, distribution cos. DISCOs)
- <u>Transmission & distribution planning</u> (5-15 yrs): add circuits to maintain reliability and minimize costs/ environmental effects (Regional Transmission Organization RTO)
- <u>Resource planning</u> (10 40 yrs): define most profitable mix of supply sources and D-S programs using LP, DP, and risk analysis methods for projected prices, demands, fuel prices (GENCOs)

Pricing Decisions

- <u>Bidding</u> (1 day 5 yrs): optimize offers to provide power, subject to fuel and power price risks (suppliers)
- <u>Market clearing price determination</u> (0.5- 168 hours): maximize social surplus/match offers (Power Exchange PX, marketers)

Emerging Uses of Process Models

- Profit maximization rather than cost minimization guides firm's decisions
- **Market simulation:**
 - Use model of firm's decisions to simulate market. Paul Samuelson:
 - MAX {consumer + producer surplus}
 - ⇔ Marginal Cost Supply = Marg. Benefit Consumption
 - ⇔ Competitive market outcome
 - Other formulations for imperfect markets
 - Price forecasts
 - Effects of environmental policies on market outcomes (costs, prices, emissions & impacts, income distribution)
 - Effects of market design & structure upon market outcomes

Advantages of Process Models for Policy Analysis & Market Design

Explicitness:

- Model changes in technology, policies by altering: – decision variables
 - objective function coefficients
 - constraints
- assumptions can be laid bare

Descriptive uses:

- Texture! Detailed impacts of policy
- Costs, emission, technology choices, market prices, consumer welfare

Normative:

- identify better solutions through use of optimizatio
- show tradeoffs among policy objectives

II.A Operations Model: 1. System Dispatch "Linear Program"

Basic model

Cost minimization, pure thermal system, deterministic

In words:

- Choose level of operation of each generator (decision variable),
- ...to minimize total system cost (objective)
- ...subject to load, capacity limit (constraints)

Decision variable:

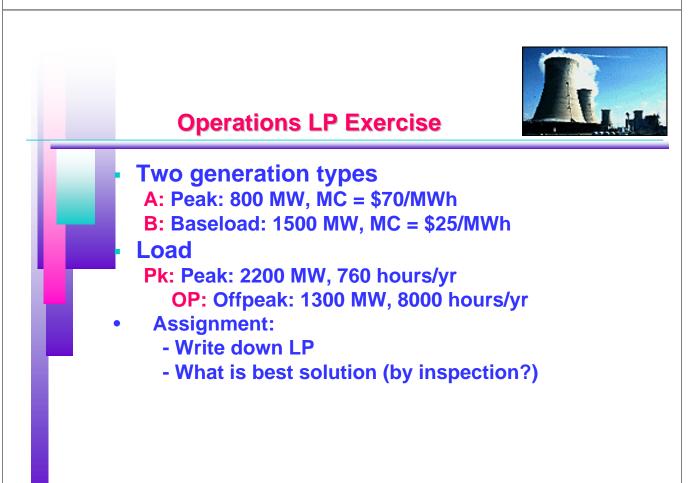
y_{it} = megawatt [MW] output of generating unit i (i=1,..,I) during period t (t=1,..,T)

Coefficients:

CY_{it} = variable operating cost [\$/MWh] for y_{it}

- $X_i = MW$ capacity of generating unit i.
- LOAD_t = MW demand to be met in period t
- H_t = length of period t [hours/yr]. (Note: in pure thermal system, periods do not need to be sequential)

Operations LP

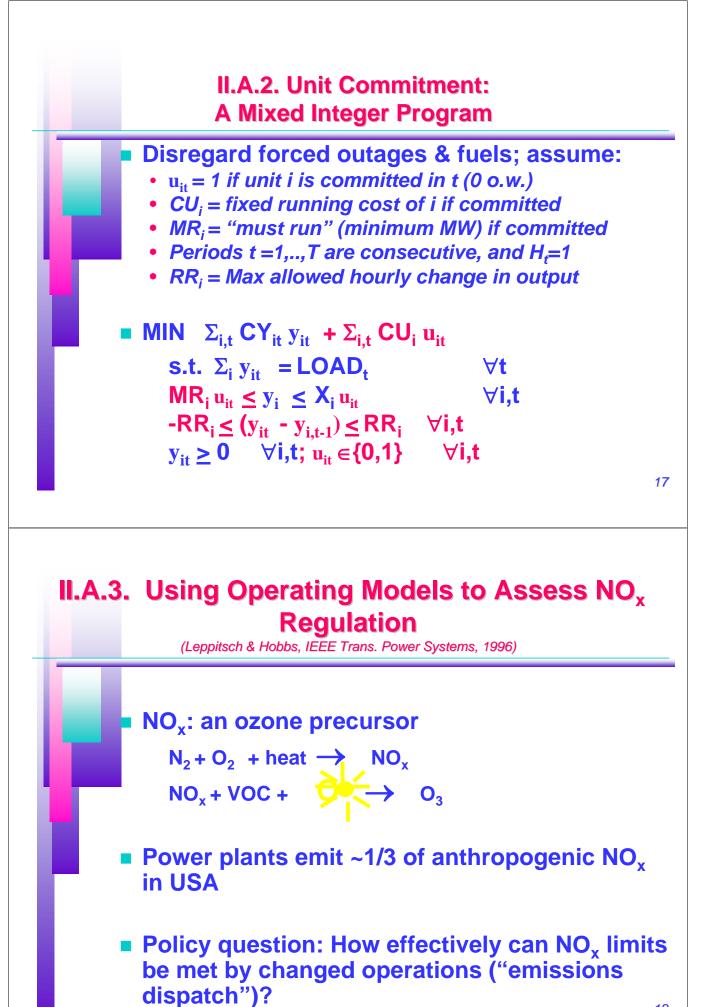


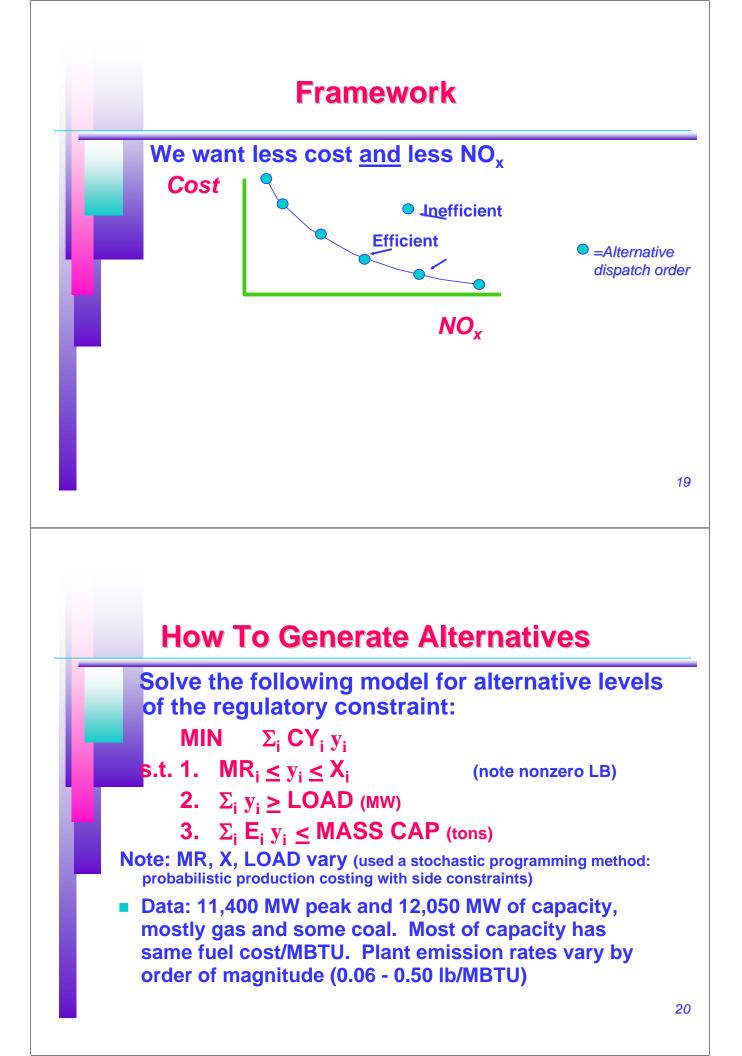
EXCEL Solver Model for Cost Minimization

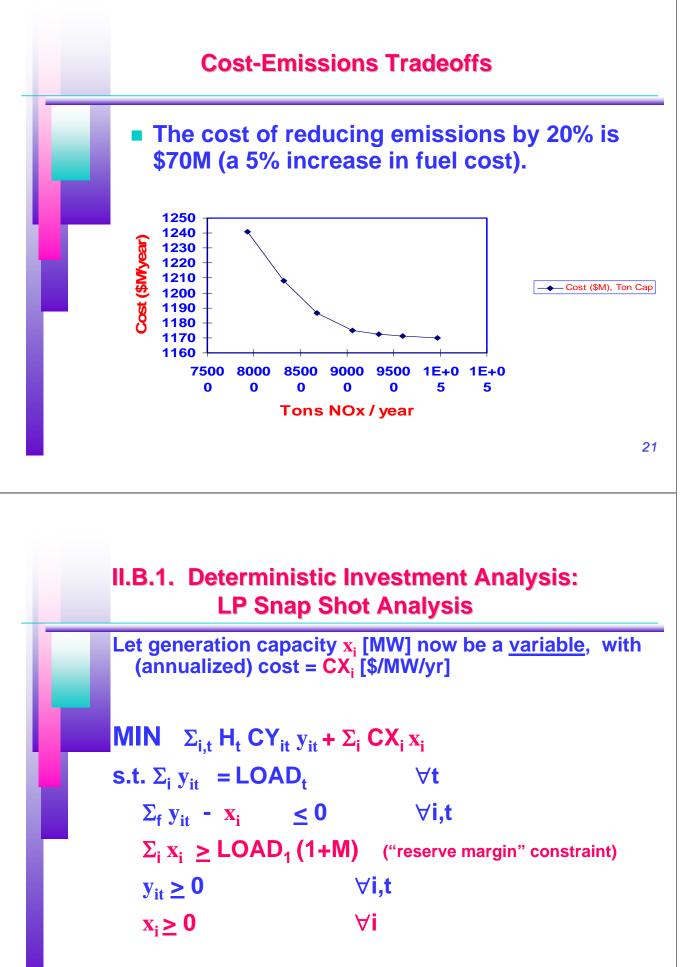
	A	В	С	D	Е	F	G	Н	l	J	
1	Operations Lin	ear Program									
2	Decision Varia	Decision Variables									
3	Name	q _{A,Pk}	$q_{B,Pk}$	<i>q _{А,ОР}</i>	<i>q</i> _{в,ор}						
4	Value q	700	1500	0	1300						
5	Capacity Q _{i,max}	800	1500	800	1500						
6	CM _{i,t} \$/MWh	70	25	70	25						
7	Hours/yr	760	760	8000	8000	Objective	• "Va	ariable Cost"			
8	Obj f() term	37240000	28500000	0	26000000			325740000			
9											
1	Constraints										
1		· · ·	· · · · · ·								
1			1								
1				1	1						
1								pht Hand Side		\$/MWh	
1			1500	0	0	2200		2200	53200	70	
1	6 Load Offpeak	0	0	0	1300	1300	=	1300	200000	25	
					Solver Par	ameters			?	×	
					Set Target Cell:	\$H\$8			Solve		
						<u>4</u> ax 🖲 Mi <u>n</u> C	⊻alue	of: 0	Close		
					By Changing Cells:			-			
					\$B\$4:\$E\$4			<u>G</u> uess			
					Subject to the Constraints:						
					\$B\$4:\$E\$4 <= \$B \$F\$15:\$F\$16 = \$			<u>A</u> dd			
								Change	Reset Al		
Delete Help											

Operating Model Formulation, Continued: Complications

- Other objectives
 - Max Profit? Min Emissions?
- Energy storage
 - Pumped storage, batteries, hydropower
- Explicitly stochastic
 - Usual assumption: forced outages are random and independent
- Transmission constraints
- Commitment variables
 E.g., start-up costs
 - Coconstant up of
- Cogeneration

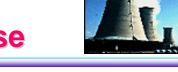




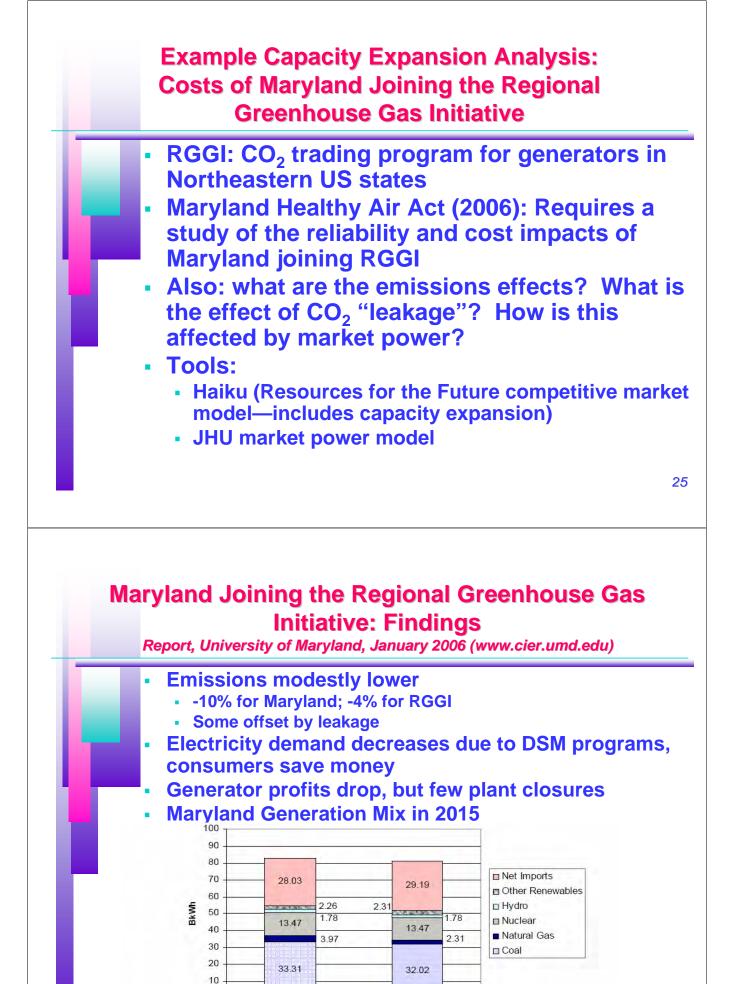


Some Complications

- **Dynamics (timing of investment)**
- Plants available only in certain sizes
- Retrofit of pollution control equipment
- Construction of transmission lines
- "Demand-side management" investments
- Uncertain future (demands, fuel prices)
- Other objectives (profit)



- Operating Cost = \$70/MWh
- Capital Cost = \$70,000 / MW/yr
- **B: Baseload:**
 - Operating Cost = \$25/MWh
 - Capital Cost = \$120,000 / MW/yr
- Load
 - Peak: 2200 MW, 760 hours/yr
 - Offpeak: 1300 MW, 8000 hours/yr
 - Reserve Margin: 15%
- Assignment:
 - Write down LP
 - What is best solution (by inspection?)



0 -

Baseline

Maryland Joins RGGI

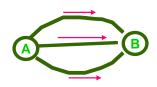
Implications of Laws

- Use laws to calculate flows
 - If you know power generation and consumption at "bus" except the "swing bus", then ...
 - The "load flow" (currents in each line, voltages at each are uniquely determined by Kirchhoff's two laws!
 - This is the "load flow" problem

Some odd byproducts of laws:

- Can't "route" flow
- Parallel flows

- What you do affects everyone else
- Adding a line can worsen transmission capacity of system



29

DUS)

AC Load Flow is More Complex

- Voltage at each bus is sinusoidal (with RMS amplitude and phase angle), as are line currents
- "Reactive" (vs. "real" power) a result of "reactance" (capacitance and inductance)
- This is the power stored and released in magnetic fields of capacitors and inductors as the current changes direction
- Although reactive power doesn't do useful work, it causes resistance losses & uses up capacity

"DC" Linearization of AC load flow

Assumptions

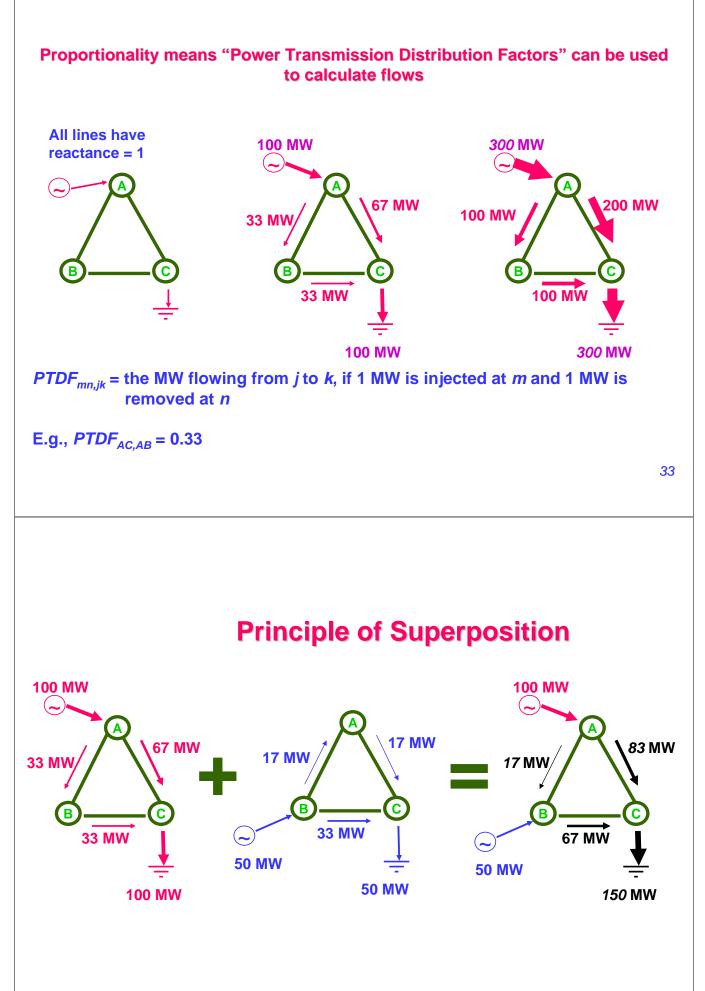
- Assume reactance >> resistance
- Voltage amplitude same at all buses
- Changes in voltage angles $\theta_{\text{A}}\text{-}\theta_{\text{B}}$ from one end of a line to another is small

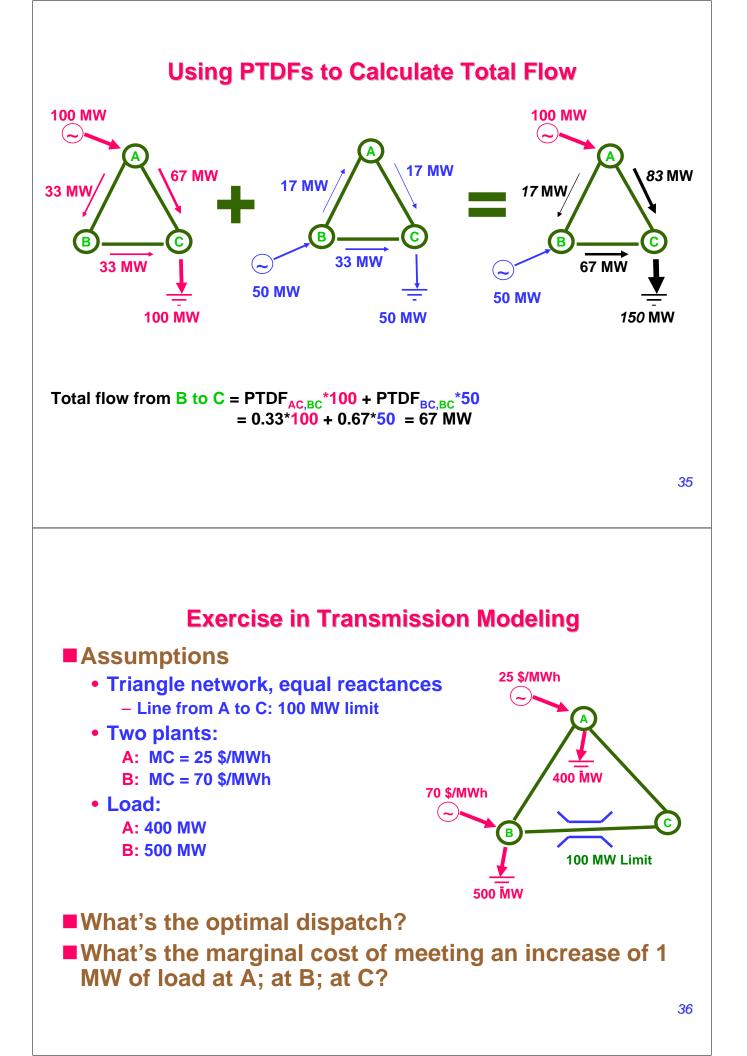
Results:

- Power flow *t*_{AB} proportional to:
 - current I_{AB}
 - difference in voltage angle $\theta_A \theta_B$
- Analogies to Kirchhoff's Laws:
 - Current law at A: $\Sigma_i y_{iA} = \Sigma_{\text{neighboring m}} t_{Am} + LOAD_A$
 - Voltage law: $t_{AB}^{*}R_{AB} + t_{BC}^{*}R_{BC} + t_{CA}^{*}R_{CA} = 0$
- Given power injections at each bus, flows are unique

Example of "DC" Load Flow

All lines have 100 MW 300 MW reactance = 1 67 MW 200 MW 100 MW 33 MW 33 MW 100 MW 300 MW 100 MW Kirchhoff's Current Law at C: **Proportionality!** +33 + 67 - 100 = 0Kirchhoff's Voltage Law: 1*33 + 1*33 + 1*(-67) = 0





Linearized Transmission Constraints in Operations LP

 y_{imt} = MW from plant *i*, at node *m*, during *t* z_{mt} = Net MW injection at node *m*, during t

Linearized Transmission Constraints in Operations LP: Exercise Example

MIN Variable Cost = $25y_A + 70y_B$

subject to:

Net Injection: $y_A - 400 = z_A$ $y_B - 500 = z_B$ Injection Balance: $z_A + z_B = 0$

Transmission: $-100 \le [0.33z_A + 0.0z_B] \le +100$

Nonnegativity:

Note: In calculating PTDFs, I assume that all injections "sink" at node B

• E.g., injection z_A at A is assumed to be accompanied by an equal withdrawal $-z_A$ at B

III. Mathematical Programming Models of Perfectly Competitive Energy Markets

A. An Equivalency Result

- Each player maximizes their profit, subject to fixed prices (no market power)
- Market clears (supply = demand)

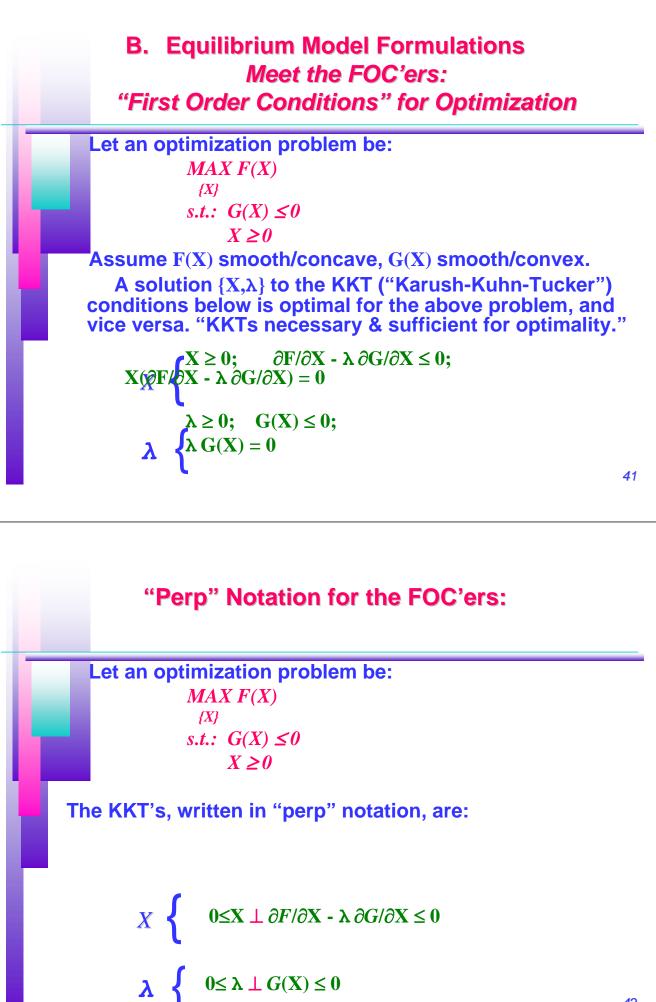
Assemble:

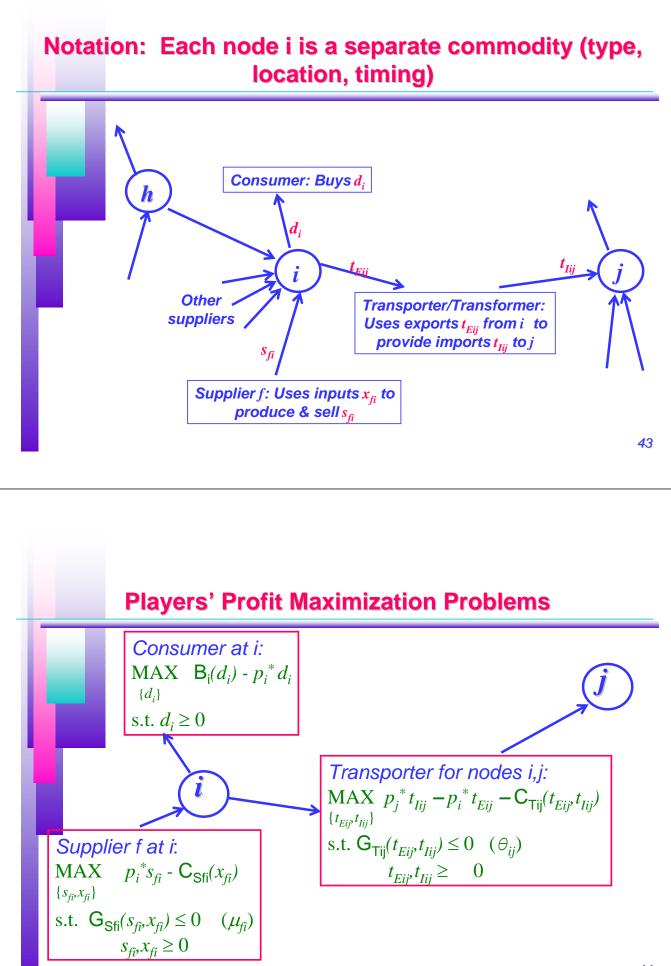
- "First order" optimization conditions for players
- Market clearing
- This yields set of simultaneous equations that can be solved for a market equilibrium
- Same set of equations are first order conditions for a single optimization model (MAX net social welfare)
 - MAX (Area under demand curves)-(Cost)
 - Results in intersection of demand + supply curves
- Widely used in energy policy analysis

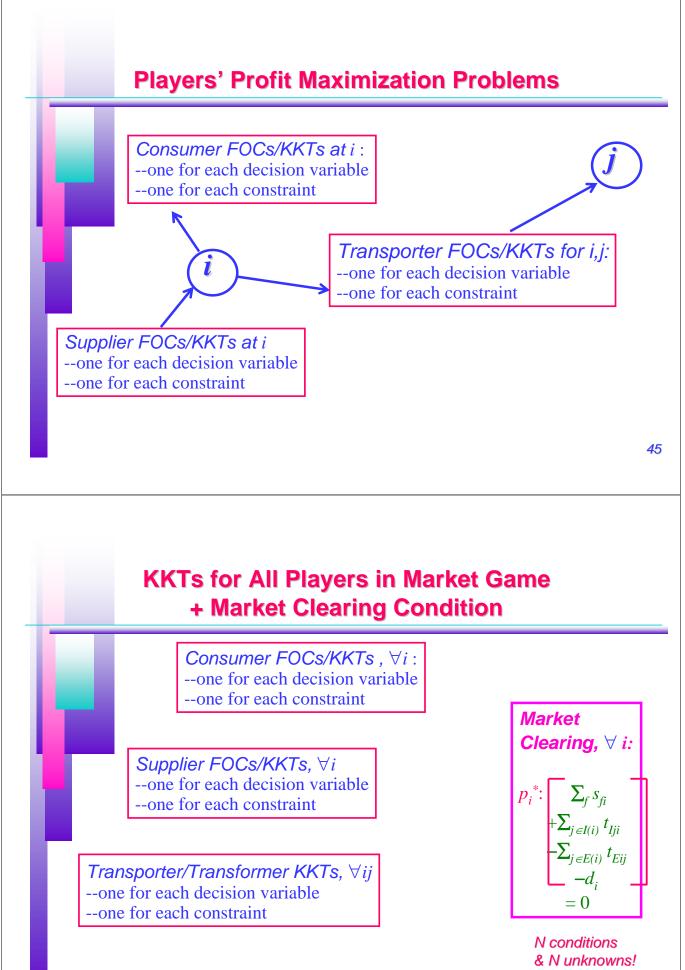
39

Applications of the Pure Competition Equivalency Principle

- MARKAL: Used by Intl. Energy Agency countries for analyzing national energy policy, especially CO₂ policies
- US Project Independence Evaluation System (PIES) & successors (W. Hogan, "Energy Policy Models for Project Independence," <u>Computers and Operations Research</u>, 2, 251-271, 1975; F. Murphy and S. Shaw, "The Evolution of Energy Modeling at the Federal Energy Administration and the Energy Information Administration," <u>Interfaces</u>, 25, 173-193, 1995.)
- US Natl. Energy Modeling System (C. Andrews, ed., <u>Regulating Regional Power</u> <u>Systems</u>, Quorum Press, 1995, Ch. 12, M.J. Hutzler, "Top-Down: The National Energy Modeling System".)
- ICF Coal and Electric Utility Model (http://www.epa.gov/capi/capi/frcst.html)
 - > Acid rain, Clear Skies, Clean Air Interstate Rule
- > POEMS (http://www.retailenergy.com/articles/cecasum.htm)
 - Economic & environmental benefits of US restructuring
- Some of these modified to model imperfect competition (price regulation, market power)







An Optimization Model for Simulating a Commodity Market

 $\begin{array}{l} \textbf{MAX} \quad \textbf{(Value of Consumption) - (Production, Transport Cost)} \\ \textbf{MAX} \quad \sum_{i} B_{i}(d_{i}) \quad -\sum_{fi} C_{Gi}(x_{fi}) - \sum_{ij} C_{Tij}(t_{Eij}, t_{Iij}) \\ \{d_{i}, s_{fi}, x_{fi}, t_{Eij}, t_{Iij}\} \end{array}$

Production Functions for each firm:

 $\begin{array}{rcl} \mathsf{G}_{\mathsf{Si}}(s_i,\,x_i) &\leq & 0,\,\forall i\\ \mathsf{G}_{\mathsf{Tij}}(t_{Eij},\,t_{Iij}) &\leq & 0,\,\forall ij\\ \end{array}$ Market Clearing for each commodity:

 $\sum_{\mathbf{f}} s_{fi} + \sum_{\mathbf{j} \in \mathbf{I}(\mathbf{i})} t_{Iji} - \sum_{\mathbf{j} \in \mathbf{E}(\mathbf{i})} t_{Eij} - d_i = 0, \forall \mathbf{i}$

...and the usual nonnegativity conditions

Its FOC conditions = market equilibrium conditions for the purely competitive commodities market! So:

- a single NLP can simulate a market
- a purely competitive market maximizes social surplus

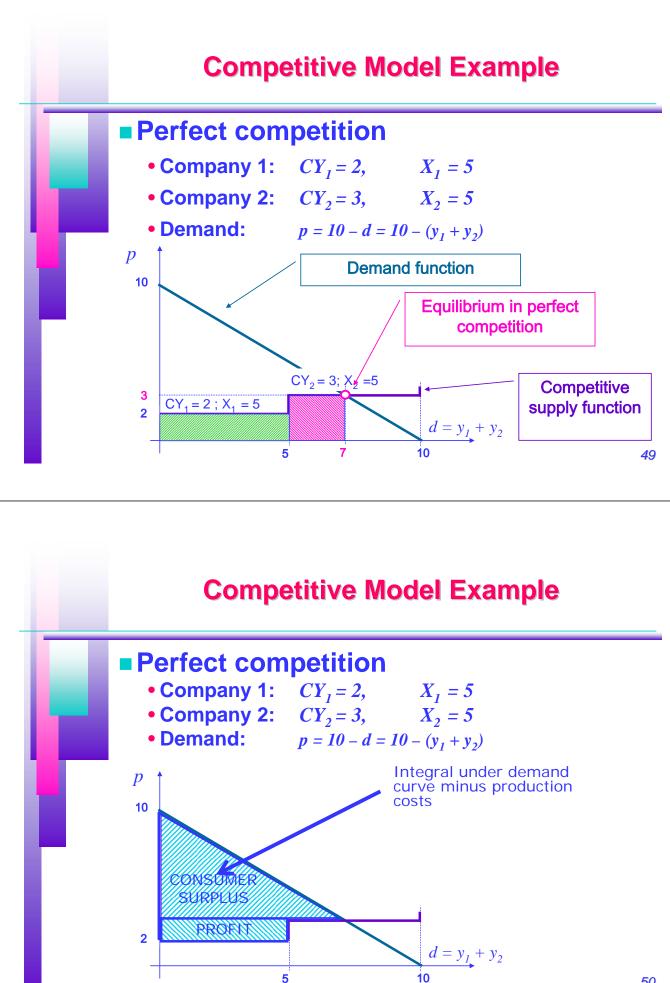
47

s.t.

An Optimization Model for Simulating a Competitive Energy Market

MAX Social Surplus = $\Sigma_t B(d_i) - \Sigma_{i,t} H_t CY_{it} y_{it}$ subject to constraints:Meet load: $-\Sigma_i y_{it} + d_t = 0$ ∇t Generation no more than capacity: $y_{it} \leq X_i$ $\forall i, t$ Nonnegativity: $y_{it} \geq 0$ $\forall i, t$

This is a "Quadratic Program" (i.e., objective, constraints are either linear or quadratic in decision variables)



Excel Solver Perfect Competition Model

				Solver Pa	? 🗙			
1				Set Target Cell Equal To: (By Changing Co \$8\$5:\$D\$5		alue of: 🍡		Solve Close
	A	В	С	-Subject to the				Options
1	Market Simulation for C	ompetitive	e Market	\$C\$5:\$D\$5 <: \$E\$16 = \$G\$1		-	Add	
2	Decision Variables							
3		Demand	Operations	s Variables				
4	Name	d	y _A	У в				
5	Value of d.v.	7 5		2				
6	Capacity X_i	n.a.	5	5				
7	CY, \$/MWh		2	3				
8	Demand Price Intercept	10						
9	Demand Slope	-1			MAX '	al Surplus'		
10	Obj f() term	45.5	-10	-6			29.5	
11								
12	Other Constraints							
13	Constraint Coefficients (L	eft Side)						P = MC =
14	Load constraint	1	-1	-1				Dual Price
15	Constraint Coefficients tin				LHS ''G(X)''		RHS "B"	\$/MWh
16	Load constraint	7	-5	-2	0	=	0	3

General Procedure for Building Equilibrium Models

- Not all equilibrium problems can be formulated as optimization problems
 - Complementarity models are more general
 - Some but not all complementarity equilibrium problems have an equivalent optimization problem
 - But all convex optimization problems have an equivalent equilibrium (KKT) problem
- Five steps:
 - 1. Formulate optimization submodel for each market party
 - 2. Derive KKTs for each party's submodel
 - **3.** Create a complementarity problem consisting of those conditions for all parties plus market clearing
 - Should be as many conditions (either perp or equality) as variables. As check, associate one variable with each condition
 - Types of complementarity problems include linear/nonlinear, nonmixed/mixed (without or with equality conditions, each with a matching unrestricted variable)
 - 4. Analyze resulting problem for existence, uniqueness, other properties
 - 5. Parameterize & solve

III.C. Commodity Modeling Exercise

- 1. Draw a diagram representing the following market structure:
 - Two electricity companies in California
 - Use two commodities as inputs:
 - 1. NO_x emissions allowances
 - 2. Natural gas
 - > Sell power in offpeak and peak electricity markets
 - Supply of NO_x emission allowances auctioned by EPA
 - Natural gas produced by companies in Texas, and piped to California
- 2. Write an optimization problem that gives an equivalent solution
- 3. Homework: Write optimization problem for each party & derive a complementarity problem (in very general terms) that would represent a competitive equilibrium
 - Assume all parties are 'price takers'

53

IV. Strategic Market Modeling: Oligopoly A. Concepts

- Oligopoly or imperfect competition is the most representative market structure in real electric power markets
 - Small number of large generating firms.
- Imperfect market analysis and modelling is more complex
 - Each generator must bear in mind the interdependence between its decisions and the decisions of all other agents
 - This strategic interdependence varies with the time horizon of the decisions to be made

Market Power = Ability to manipulate prices persistently to one's advantage, independently of the actions of others

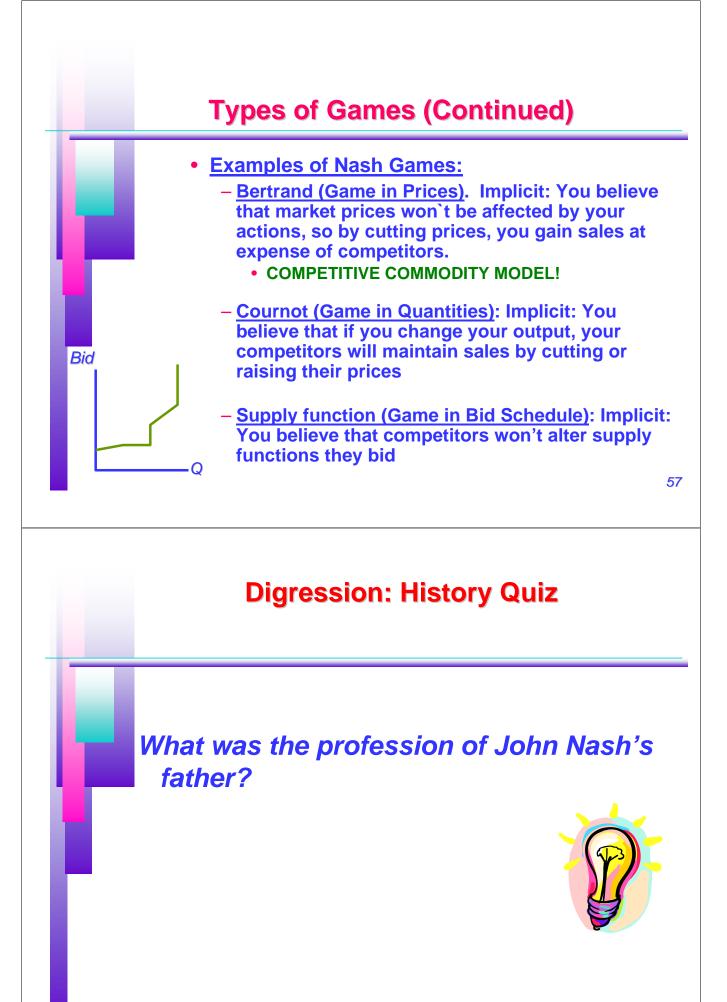
Generators: The ability to raise prices above marginal cost by restricting output Generators may be able to exercise market power because of:

- economies of scale
- large existing firms
- transmission costs, constraints
- siting constraints, long lead time for genera construction
- dumb market designs

55

- Each player implicitly assumes that other players won't react.
- "Nash Equilibrium": no player believes it can do better by a unilateral move
- Let $\pi_i(X_i, X_{-i}) = i$'s profit, a function of *i*'s strategy X_i and everyone else's strategy X_{-i}
- **Nash equilibrium** $\{X_i^*, X_{-i}^*\}$ occurs if:

 $\pi_{i}(X_{i}^{*}, X_{-i}^{*}) \geq \pi_{i}(X_{i}, X_{-i}^{*})$ for all feasible X_{i} , and for all i



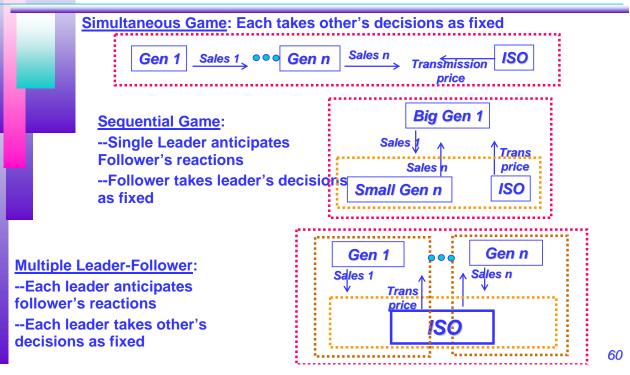
Types of Games (Continued)

- <u>Noncooperative Game (Asymmetric/Leader-Follower)</u>: Leader knows how followers will react.
 - E.g.: strategic generators anticipate:
 - how a passive ISO prices transmission
 - competitive fringe of small generators, consumers
 - "Stackelberg Equilibrium"
 - Multiple leaders possible:
 - Several large generators competiting a la Nash with each other, but each anticipating reaction of ISO (transmission pricing) and fringe generators (outputs)

<u>Cooperative Game (Exchangable Utility/Collusion)</u>: Max joint profit.

- E.g., competitors match your changes in prices or output

Three General Generator-Transmission Games



B. Computation Methods for Nash (Simultaneous) Games Simple Example

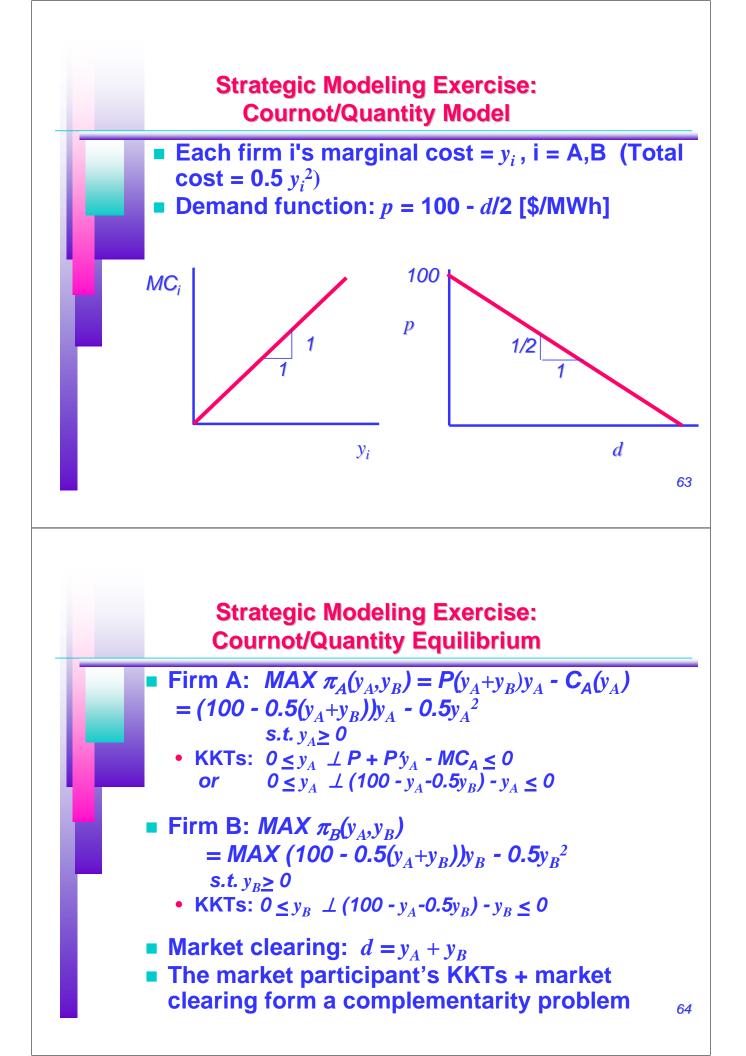
- 1. <u>Payoff Matrix</u>: Enumerate all combinations of player strategies; look for stable equilibrium
- 2. <u>Iteration/Diagonalization/Alternate Play/Gauss-</u> <u>Seidel</u>: Simulate player reactions to each other until no player wants to change
- 3. <u>Direct Solution of Equilibrium Conditions</u>: Collect FOCs/KKTs for all players; add market clearing conditions; solve resulting system of conditions directly
 - Usually involves complementarity conditions
- 4. <u>Equivalent Optimization</u>: May exist a single optimization model that gives same solution ("Hashimoto")

61

From Econometrica, 1933, courtesy of Claire Friedland and George J. Stigler.

Strategic Modeling Exercise

- Two Cournot generators (competing on quantity)
 - Sell output in ISO day ahead market
 - Strategic variables is quantity bid
 - "Locational marginal pricing" "first price auction" -- market clearing price
 - Equivalent to bilateral contracting with efficient arbitrage
- Solve example with 4 methods
- Variant: "Pay as Bid"
 - Strategic variable is price bid
 - No single price; if cut price, you might sell more, but at a lower price
 - Also try to solve with payoff matrix



Method 1:

Find cell such that π_A is highest in column (Firm A maximizes its profit given y_B) and π_B is highest in row (Firm B maximizes its profit given y_A). In the below table, **Bold italics** represents Firm A's best response to y_B , while **Bold** represents Firm B's best response to y_A . The format of the table is:

$\underline{A} \setminus y_B$:	30	3	2	3	4	3	36	3	8	4	0	4	2	4	4	4	6	4	8	5	0
30	1650	1620		1590		1560		1530		1500		1470		1440		1410		1380		1350	
	165		1696		1734		1764		1786		1800		1806		1804		1794				
32	1696	1664		1632		1600		1568		1536		1504		1472		1440		1408		1376	
~ ~ ~	162 1734	1700	1664	1666	1700	1632	1728		1748	1564	1760	1530	1764	1496	1760	1462	1748	1428	1728	1394	17
34	17 34		1632		1666		1692	1598	1710		1720		1722		1716		1702		1680		16
36	1764	1728		1692		1656		1620		1584		1548		1512		1476		1440		1404	10
50	156		1600		1632		1656		1672		1680		1680		1672		1656		1632		16
38	1786	1748		1710		1672		1634		1596		1558		1520		1482		1444		1406	
	153	30	1568		1598		1620		1634		1640		1638		1628		1610		1584		15
40	1800	1760		1720		1680		1640		1600		1560		1520		1480		1440		1400	
	150	00	1536		1564		1584		1596		1600		1596		1584		1564		1536		15
42	1806	1764		1722		1680		1638		1596		1554		1512		1470		1428		1386	_
	147	0	1504		1530		1548		1558		1560		1554		1540		1518		1488		14
44	1804	1760		1716		1672		1628		1584		1540		1496		1452		1408		1364	
	144		1472		1496		1512		1520		1520		1512		1496		1472		1440		14
46	1794 141	1748	1440	1702		1656	1476	1610	1482	1564	1480	1518	1470	1472	1452	1426		1380		1334	13
40	1776			1680	1462	1632		1584		1536		1488		1440		1392	1426	1344	1392	1296	13
48	138		1408		1428		1440		1444		1440		1428		1408		1380		1344		13
50	1750	1700		1650		1600		1550		1500		1450		1400		1350		1300		1250	
	138	i0	1376		1394		1404		1406		1400		1386		1364		1334		1296		12

Method 2: Diagonalization/Iteration Method

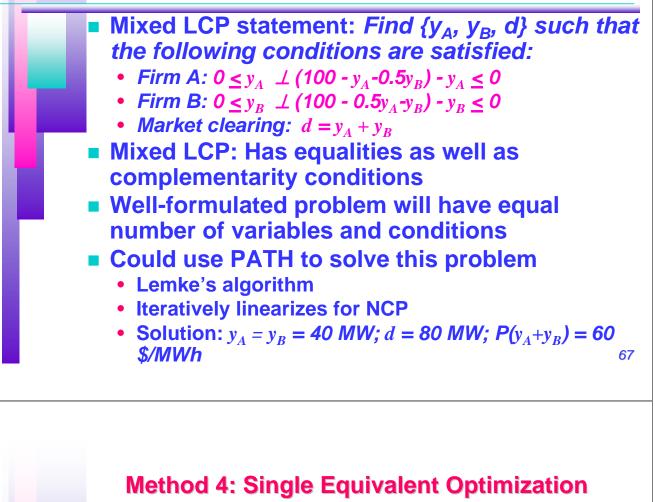
• Optimal reaction of Firm A to y_B is found by maximizing $\pi_A(y_A, y_B)$ w.r.t. y_A . The resulting KKT condition that defines the optimal response y_A is:

 $0 \leq y_A \perp d\pi_A(y_A, y_B)/dy_A \leq 0$, or:

- $0 \le y_A \perp (100 y_A 0.5y_B) y_A \le 0$
- If the optimal $y_A > 0$, then $y_A = 50 y_B/4$ is the optimal reaction. A similar development given B's optimal reaction to y_A as $y_B = 50 y_A/4$.
- Tennis anyone?

Iteration #	УА	Ув]
0		70 = i	nitial point
1	32.5		
2		41.875	
3	39.531		
4		40.117	
5	39.971		
6		40.007	
7	39.998		
8		40.0005	

Method 3: Mixed Linear Complementarity Problem Statement



Problem (Hashimoto 1985)

Consider the following MP:

$$MAX \int_{0}^{d} (100-q/2)dq - (y_{A}^{2}/4 + y_{B}^{2}/4) - C_{A}(y_{A}) - C_{B}(y_{B})$$

s.t. d - y_A - y_B = 0; y_A, y_B ≥ 0

First term: integral of demand curve. If the underlined term was omitted, this would be the standard welfare max (perfect competition) model.

• Underlined term modifies customer value term (integral) so that the derivative of {integral + underscored term} w.r.t. y_f is the marginal revenue (MR) for a Cournot firm f rather than price.

- KKT conditions =equilibrium conditions (Method 3)
- But it is not always possible to define a single optimization problem whose KKTs match the equilibrium conditions of a hypothetical market

Method 4: Excel Solver Cournot Model

					Solver Param	eters			?
				-	,	\$10 © Mi <u>n</u>	S O ⊻alue of: 0 S	Guess	<u>S</u> olve Close
	А	В	С	D	-Subject to the Constrain				Options
1	Nash-Cournot Market S	imulation	: Quadratio	: Program	\$C\$5:\$D\$5 <= \$C\$6:\$E \$E\$16 = \$G\$16	0\$6	<u> </u>	Add	
2	Decision Variables							[]	+
3		Demand	Operations	s Variables			: Actual		-
4	Name	d	<i>У</i> 1	<i>Y</i> 2		Soci	al Surplus	-	
5	Value of d.v.	80	40	40			4800		
6	Capacity X_i	n.a.	99999	99999					
7	C _i (_{<i>V i</i>}) \$/MWh		$=0.5^{*}(y_{A})^{2}$	$=0.5^{*}(y_{B})^{2}$					
8	Demand Price Intercept	100				MAX	' Modified		
9	Demand Slope	-0.5				Socia	l Surplus'		
10	Obj f() term	6400	-800	-800	-800		4000		
		Demand			Hashimoto				
		curve			term				
11		integral							
12	Other Constraints								
13	Constraint Coefficients (L	,						Price =	-
14	Load constraint	-	-1	-1				Jual Price	-
15	Constraint Coefficients tin				LHS "G(X)"		RHS "B"	\$/MWh	-
16	Load constraint	80	-40	-40	0.00	=	0	60	6

Example of Nonexistence of Pure Strategy Equilibria

Definitions:

- Pure strategy equilibrium: A firm *i* chooses X_i* with probability 1
- <u>Mixed strategy</u>: Let the strategy space be discretized { X_{ih} , h = 1,...,H}. In a mixed strategy, a firm i chooses X_{ih} with probability $P_{ih} < 1$. The strategy can be designated as the vector \underline{P}_i
 - Can also define mixed strategies using continuous strategy space and probability densities
 - Let $\underline{P}_{\underline{i}}^{c} = \{\underline{P}_{\underline{i}}, \forall j \neq i\}$
- <u>Mixed strategy equilibrium</u>: {P_i*, ∀i} is mixed strategy Nash Equilibrium iff: π_i(P_i*, P_i^{c*}) ≥ π_i(P_i, P_i^{c*}), ∀ i; ∀ P_i: Σ_h P_{ih} =1, P_{ih}≥0
- By Nash's theorem, a mixed strategy equilibrium always exists (perhaps in degenerate pure strategy form) if strategy space finite.

Another Example But with a Difference: Pay as Bid Case:

"Pay as Bid" Example. Each firm i has 100 MW of capacity and zero MC, and submits a bid BID₁ to supply it to the market. Payoff Matrix method. Find cell such that π_A is highest in column (Firm A bids to maximize its profit given BID_B) and π_B is highest in row (Firm B maximizes its profit given BID_A)

BID _A \ BID _B :	2's Bid
1's Bid	π ₁ π ₂

Bold italics represents Firm A's best bid response to BID_B Bold represents Firm B's best bid response to BID_A

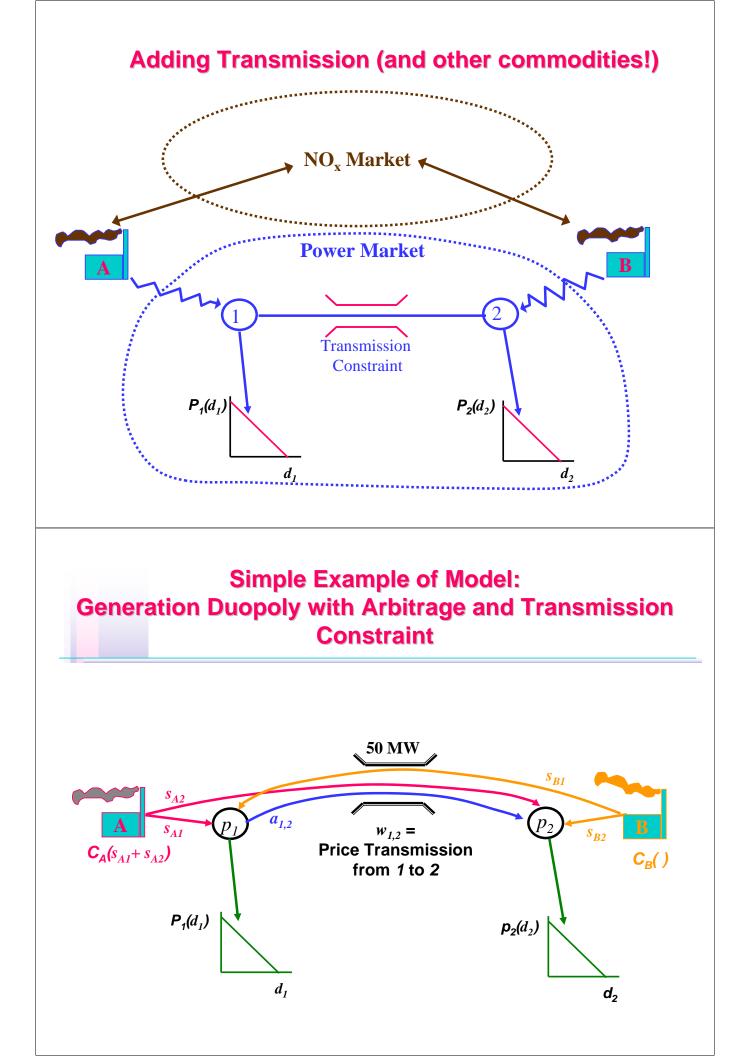
Note that there is no single cell that is the best response by both firms!

BID _A \ BID _B :	11.25	12.5	13.75	15	16.25	17.5	18.75	20	21.25	22.5	23.75	25
11.25	998 998	1125 938	1125 997	1125	1125 1097	1125	1125	1125	1125	1125	1125	1125 1250
12.5	938	1094	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
	1125	1094	997	1050	1097	1138	1172	1200	1222	1238	1247	1250
13.75	997 1125	997 1250	1186 1186	1375 1050	1375 1097	1375 1138	1375 1172	1375 1200	1375 1222	1375 1238	1375 1247	1375 1250
15	1050 1125	1050 1250	1050 1375	1275 1275	1500 1097	1500 1138	1500 1172	1500 1200	1500 1222	1500 1238	1500 1247	1500 1250
16.25	1097 1125	1097 1250	1097 1375	1097 1500	1361 1361	1625 1138	1625 1172	1625 1200	1625 1222	1625 1238	1625 1247	1625 1250
17.5	1138 1125	1138 1250	1138 1375	1138 1500	1138 1625	1444	1750 1172	1750 1200	1750 1222	1750 1238	1750 1247	1750 1250
18.75	1172 1125	1172 1250	1172 1375	1172 1500	1172 1625	1172 1750	1523 1523	1875 1200	1875 1222	1875 1238	1875 1247	1875 1250
20	1200 1125	1200 1250	1200 1375	1200 1500	1200 1625	1200 1750	1200 1875	1600 1600	2000 1222	2000 1238	2000	2000 1250
21.25	1222 1125	1222 1250	1222 1375	1222 1500	1222 1625	1222 1750	1222 1875	1222 2000	1673 1673	2125 1238	2125	2125 1250
22.5	1238 1125	1238 1250	1238 1375	1238 1500	1238 1625	1238 1750	1238 1875	1238 2000	1238 2125	1744	2250 1247	2250 1250
23.75	1247 1125	1247 1250	1247 1375	1247 1500	1247 1625	1247 1750	1247 1875	1247 2000	1247 2125	1247 2250	1811	2375 1250
25	1250 1125	1250 1250	1250 1375	1250 1500	1250 1625	1250 1750	1250 1875	1250 2000	1250 2125	1250 2250	1250 2375	1875 1875

C. A Cournot Transmission-Constrained Model

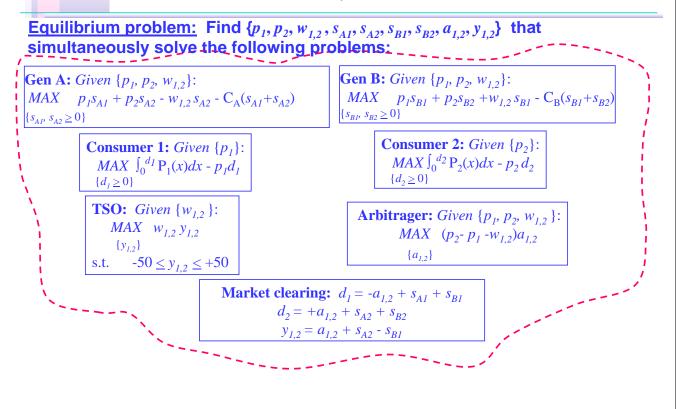
Features:

- Bilateral market (generators sell to customers, buy transmission services from ISO)
- Cournot in power sales
- Generators assume transmission fees fixed; linearized DC load flow formulation
- If there are arbitragers, then same as POOLCO Cournot model
 - In which generators sell to "single buyer"
- Mixed LCP formulation: allows for solution of very large problems



Perfect Competition Model

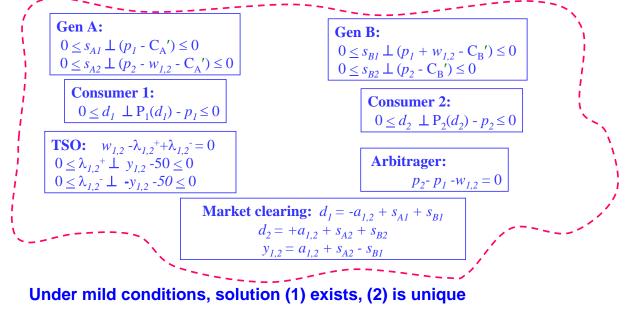
Everyone a price taker w.r.t. nodal energy prices P_1 , P_2 , and transmission price $W_{1,2}$



Perfect Competition Model

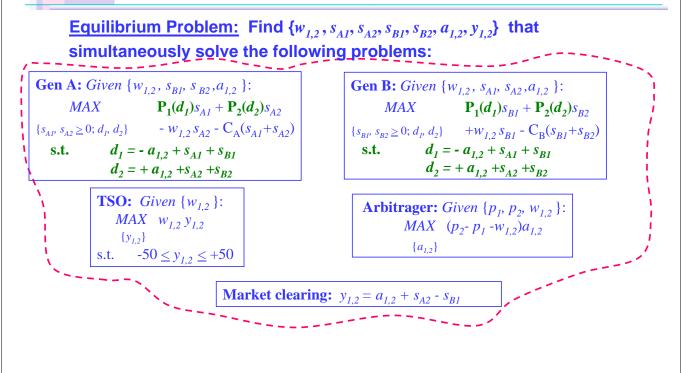
Derive KKTs for each player's problem; combine with market clearing conditions

<u>Mixed LCP:</u> Find { $p_1, p_2, w_{1,2}, s_{A1}, s_{A2}, s_{B1}, s_{B2}, a_{1,2}, y_{1,2}, \lambda_{1,2}^+, \lambda_{1,2}^-$ } that simultaneously solves the following *mixed complementarity problem*:



Oligopolistic Generation

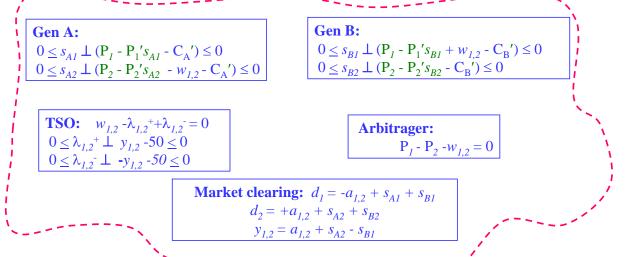
Naïve assumption that Generators are Bertrand (price takers) with respect to transmission costs W (e.g., Wei & Smeers, 2000)



Oligopolistic Generation Model

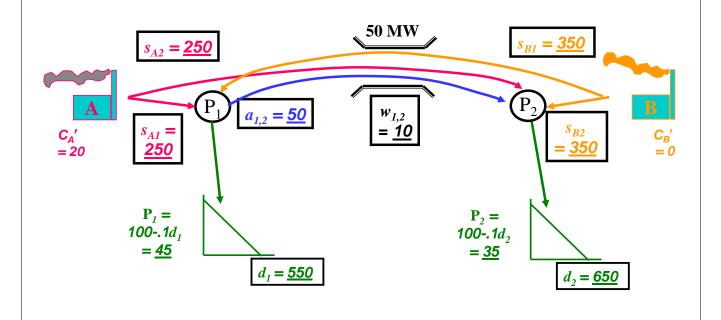
Derive KKTs for each player's problem; combine with market clearing conditions. After rearrangement, we get:

<u>Mixed LCP:</u> Find { $p_1, p_2, w_{1,2}, s_{AI}, s_{A2}, s_{BI}, s_{B2}, a_{1,2}, y_{1,2}, \lambda_{I,2^+}, \lambda_{I,2^-}$ } that simultaneously solves the following *mixed complementarity problem*:



Under mild conditions, solution to resulting MCP-(1) exists, (2) is unique, and (3) is equivalent to POOLCO Cournot equilibrium

Simple Example of Model: Generation Duopoly with Arbitrage and Transmission Constraint



D. A Large Scale Cournot Bilateral & POOLCO Model

(B.F. Hobbs and U. Helman, "Complementarity-Based Equilibrium Modeling for Electric Power Markets," in D.W. Bunn (ed.), Modeling Prices in Competitive Electricity Markets, J. Wiley, 2004)

Features:

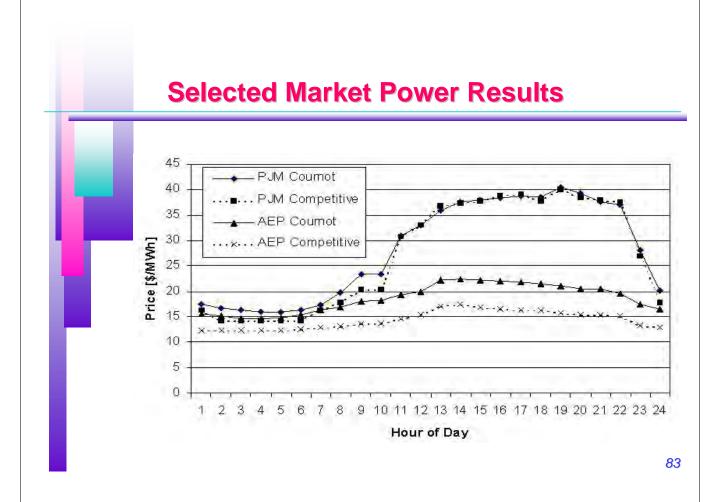
- Bilateral market (generators sell to customers, buy transmission services from ISO)
- Cournot in power sales
- Generators assume transmission fees fixed; linearized DC load flow formulation
- Mixed "linear complementarity" formulation: allows for solution of very large problems

A Large Scale Implementation: Eastern Interconnection Model

100 nodes representing control areas and 15 interconnections with ERCOT, WSSC, and Canada
829 firms (of which 528 are NUGs)
7725 generating plants (in some cases aggregated by prime mover/fuel type/costs); aproximately 600,000 MW capacity
Implemented by FERC staff
Spatial market power issues (congestion, addition of transmission constraints)
Effects of mergers

Eastern Interconnection Model

- 814 flowgates, each with PTDFs for each node (most flowgates and PTDFs defined by NERC; a mix of physical and contingency flowgate limits)
- 68 firms represented as Cournot players (with capacity above 1000 MW). Remainder is competitive fringe



Merger Example (Firm A at Node A, Firm B at Node B)

	pre-merger	merger
Competition	\$22.17	\$22.17
Cournot w/ arbitrage	\$22.85	\$ <u>22.86</u>
Difference	<u>3.07%</u>	3 <u>.11%</u>
Cournot Price Node A	\$18.89	\$18.92
Cournot Price Node B	\$27.65	\$27.66
Profits	A+B=\$162,723	AB=\$162,400

E. Advanced Models Desirable Improvements

(thanks to R. Baldick, 2006)

- Improved models of Physical system
 - Better representation of technology constraints
 - •The economist's "production function"
- Improved models of Commercial system
 - Definition of products / markets
 - •"Settlement rules": who gets paid what in each market

Improved models of Economic system

- Agent objectives
- Agent strategic variables
- Agent state of knowledge / expectations
- Agent cooperation

85

Examples of Improved Models: Generation

Better physical models

- Multiple periods and hydro (Bushnell 2002)
- Capacity additions
 - Make capacity & energy decisions at same time ("open loop") (Wei, Smeers, 1999)
 - Make capacity decisions anticipating effect on energy market ("closed loop") (Murphy, Smeers, 2004)
- Emissions permits markets (*)

Better commercial models

- Locational operating reserves markets (Helman 2002; Bautista et al. 2005)
- Two-settlement systems: day ahead (perhaps zonal pricing) and realtime (locational) (EPEC!) (Kamat & Oren, 2004)

Better economic models

- Forward contracts:
 - Exogenous contracts (Green 2002)
 - Endogenous contracts: Two stage models (EPECs!) (Yao, Oren, Adler 2005)
- Anticipate supply response of rivals
 - Include fringe's KKTs in leader's constraint set (MPEC!)(Neuhoff et al.)
 - "Conjectured supply response" (Day/Hobbs 2002)
 Inverse problem (estimate conjectural variations) (Garcia-Alcalde et al. 2002)
- Tacit collusion (multiperiod "supergames") (Liu, Harrington, Hobbs, Pang, 2005)

Examples of Improved Models: Transmission

Better *physical* models:

- Linearized DC Load flow model (*)
 - TSO constraints involve PTDFs
 - Quadratic losses
- AC Load flow model (Anjos, Bautista et al. 2006)
- Controllable DC lines, phase shifters in linearized DC load flow (Hobbs et al. 2006)

Better commercial models:

- Commercial rules results in (economically) imperfect transmission pricing
 - Path-based models (Hobbs, Rijkers et al. 2003)
 - No-netting of flows (use nonnegative flow variables for each direction) (Hobbs, Rijkers et al. 2003)
 - Average cost-based tariffs (Wei and Smeers, 2000)

Better economic models:

- Generators anticipate transmission price changes
 - Include TSO KKTs as constraints: MPEC! (e.g., Cardell/Hitt/Hogan 1997; Hobbs/Metzler/Pang 2000; Borenstein/Bushnell/Stoft 2000)
 - Or "conjectured transmission price response" (MCP) (Hobbs/Rijkers 2003)

87

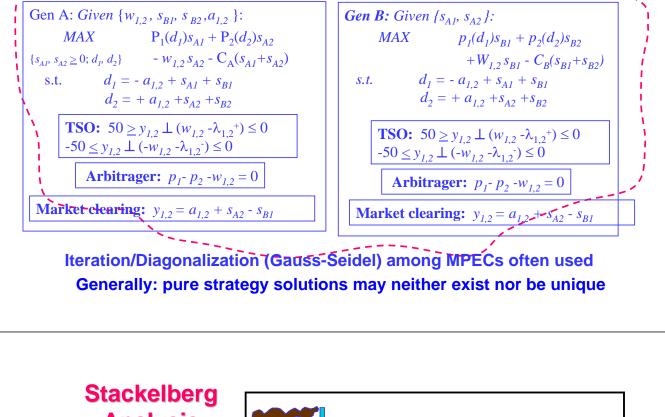
Example of a Stackelberg (Leader-Follower) Model

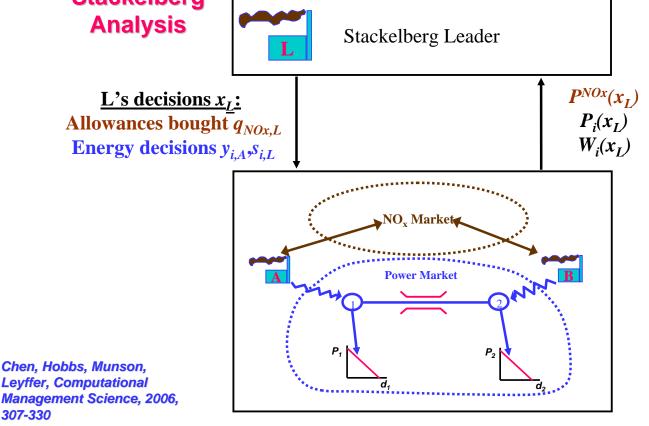
- Large supplier as <u>leader</u>, ISO & other suppliers as <u>followers</u> in POOLCO market
- Problem: choose bids B_{Li} to max π_L MAX π_L = Σ_i [P_iy_{Li} - C_i(y_{Li})]
 - s.t. $0 \le y_{Li} \le X_i$, $\forall i$
 - KKTs for ISO (depend on B_{Li}'s) KKTs for other suppliers (price takers)
- The Challenge: the complementarity conditions in the leader's constraint set render the leader's problem nonconvex (i.e., feasible region non-convex)
- Algorithms for math programs with equilibrium constraints (MPECs) and equilibrium programs with equilibrium constraints (EPECs) are improving

EPEC

Sophisticated assumption that Generators are Stackelberg leader with respect to transmission costs w (e.g., Hobbs, Metzler, Pang, 2000)

Equilibrium Problem: Find $\{w_{1,2}, s_{A1}, s_{A2}, s_{B1}, s_{B2}, a_{1,2}, y_{1,2}\}$ that simultaneously solve the following problems:





Stackelberg Leader's Problem

The firm with a longest position in NOx market and greatest power sales is designated as the leader

 $\begin{aligned} \mathbf{q}^{\mathsf{w}} &= Stackelberg's \, \mathsf{NO}_{\mathsf{x}} \, withholding \, variable \, [tons] \\ \overline{\mathbf{q}}_{f}^{\mathsf{NO}_{\mathsf{x}}} &= Firm's \, available \, \mathsf{NO}_{\mathsf{x}} \, allowances \, [tons] \end{aligned}$ $\begin{aligned} \mathsf{MAX}_{s_{it}, g_{it}, q^{\mathsf{w}}} \sum_{i} \{ [\mathbf{p}_{i} \, (s_{if} + \sum_{g \neq f} s_{ig}) - \mathbf{W}_{i}] s_{if} - [\mathbf{C}_{if} \, (\mathbf{y}_{if}) - \mathbf{W}_{i} \mathbf{y}_{if}] \\ &- \mathbf{p}^{\mathsf{NO}_{\mathsf{x}}} [\mathbf{E}_{f}^{\mathsf{NO}_{\mathsf{x}}} - (\overline{\mathbf{q}}_{f}^{\mathsf{NO}_{\mathsf{x}}} - \mathbf{q}^{\mathsf{w}})] \} \end{aligned}$ $\begin{aligned} \mathbf{s.t.:} \, \mathbf{y}_{if} &\leq \mathbf{CAP}_{if}, \forall \, i \\ &\sum_{i} s_{if} = \sum_{i} \mathbf{y}_{if} \\ s_{if}, \mathbf{y}_{if} \geq 0, \forall \, i \\ &0 \leq \mathbf{q}^{\mathsf{W}} \leq \overline{\mathbf{q}}_{f}^{\mathsf{NO}_{\mathsf{x}}} \\ &0 \leq \mathbf{p}^{\mathsf{NO}_{\mathsf{x}}} \perp \sum_{f} (\mathbf{E}_{f}^{\mathsf{NO}_{\mathsf{x}}} - \overline{\mathbf{q}}_{f}^{\mathsf{NO}_{\mathsf{x}}}) + \mathbf{q}^{\mathsf{w}} \leq 0 \end{aligned}$ $\text{Other Producer \& TSO \, KKT \, Conditions} \\ \bullet \text{Market Clearing Conditions} \end{aligned}$

91

ISO Optimization Problem Quadratic Loss Functions

- ISO's decision variables: $Z_i = \text{transmission service from hub to } i$ $q_i^{\text{Losses}} = \text{make-up loss from node i}$ $t_{ij} = \text{flow in arc (i,j)}$ ■ ISO's maximizes the "value of services" : $MAX \quad \pi_{ISO}(t_{ij}, \mathbf{z}_i, \mathbf{q}_i^{\text{Losses}}) = \sum_i (W_i \mathbf{z}_i - \mathbf{p}_i \mathbf{q}_i^{\text{Losses}})$ $s.t.: \mathbf{z}_i - \mathbf{q}_i^{\text{Losses}} + \sum_{j \in J(i)} (t_{ij} - (1 - L_{ji} t_{ji}) t_{ji}) \le 0, \forall i$ Kirchhoff's Current Law $\sum_{(i,j) \in \mathbf{v}(k)} R_{ij}(t_{ij} - t_{ji}) = 0, \forall \mathbf{k}, (i, j) \in \mathbf{v}(\mathbf{k})$ Kirchhoff's Voltage Law $\sum_i \mathbf{z}_i = 0$ Services Balance $0 \le t_{ij} \le T_{ij}, \forall i, j$ $T_{ij} = \text{capacity of line (i,j)}$ $\mathbf{q}_i^{\text{Losses}} \ge 0, \forall i$
 - Solution allocates transmission to most valuable transactions
 - Define the model's KKTs (complementarity conditions), one per variable <u>x_{ISO}</u>

Model Statistics

- Order of magnitude larger than test problems in R. Fletcher and S. Leyffer, "Numerical Experience with Solving MPECs as NLPs," Univ. of Dundee, 2002
- Solved by PATH and SQP (SNOPT, FILTER) (Thanks to Todd Munson & Sven Leyffer!)
- 9,536 seconds (1.8 MHz Pentium 4)
 - Other MPECs took much less time

Compared to the Cournot Case:

- Stackelberg leader:
 - withholds 5,536 tons of allowances (7.2% of total available)
 - ... increasing NO_x price from 0 to 1,173 [\$/ton]
- Output:
 - other producers shrink their power sales (87.4→83.5 x10⁶ MWh) due to increased NO_x price
 - ... while the leader expands its output ($24.6 \rightarrow 28.7 \times 10^6 \text{ MWh}$)
- Profit:
 - Stackelberg leader earns more profit (893 \rightarrow 970 M\$)
 - ... at the expense of other producers $(2394 \rightarrow 2273 M\$)$
- Consumers:
 - are only marginally better off with a gain of **14** [M\$] in consumer surplus, as power prices are essentially unchanged

93

