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Questions Addressed byQuestions Addressed by
Strategic Market ModelsStrategic Market Models

What might be the effect of policies concerning…
• Generation structure (mergers, ownership, distributed resources, 

entry…)
• Transmission investment (new lines …)
• Market rules

– Transmission pricing (taxes, congestion, counterflows, zonal …)
– Access (retail load, generators, arbitragers …)
– Environmental markets (green certs., CO2 trading …)

…upon…
• Economic efficiency (allocative & productive efficiency)
• Income distribution (TSO revenues, profits, consumer surplus)
• Emissions

…considering generator strategic behavior?
• Bidding
• Capacity withdrawal
• Manipulation of transmission (deliberate congestion, decongestion)
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Course OutlineCourse Outline

I. Bottom-up Models of Markets: Philosophy
II. Review of Operations & Planning Models

A. Dispatch
B. Generation mix
C. Linearized DC load flow

III. Perfect Competition Market Models
A. Equivalency Result: Samuelson’s Principle
B. General Equilibrium Model 

IV. Strategic Market Models
A. Basic concepts
B. Simple Nash-Cournot example
C. Transmission-Constrained Cournot model
D. Advanced Models

V. Conclusions
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Overview of LectureOverview of Lecture

Operations/ Operations/ 
Control ModelsControl Models

Design/ Design/ 
Investment Investment 

ModelsModels

Single Firm ModelsSingle Firm Models

Demand ModelsDemand Models

MultifirmMultifirm Market Models with Strategic InteractionMarket Models with Strategic Interaction

Operations/ Operations/ 
Control ModelsControl Models

Design/ Design/ 
Investment Investment 

ModelsModels

Single Firm ModelsSingle Firm Models

Market Clearing Conditions/ConstraintsMarket Clearing Conditions/Constraints
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I.  “Process” or “BottomI.  “Process” or “Bottom--Up” Analysis:Up” Analysis:
Company & Market ModelsCompany & Market Models

What are bottom-up/engineering-economic 
models?  And how can they be used for policy 
analysis?

= Explicit representation & optimization of 
individual elements and processes based on 
physical relationships

Δ
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Process Optimization ModelsProcess Optimization Models

Elements:
• Decision variables.  E.g.,

– Design: MW of new combustion turbine capacity
– Operation: MWh generation from existing coal units

• Objective(s).  E.g.,
– Maximize profit or minimize total cost

• Constraints.  E.g.,
– Σ Generation = Demand
– Respect generation & transmission capacity limits
– Comply with environmental regulations
– Invest in sufficient capacity to maintain reliability

Traditional uses: 
• Evaluate investments under alternative scenarios (e.g., demand, fuel 

prices) (3-40 yrs)
• Operations Planning (8 hrs - 5 yrs)
• Real time operations (<1 second - 1 hr)
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BottomBottom--Up/Process Models Up/Process Models 
vs. Topvs. Top--Down ModelsDown Models

Bottom-up models simulate investment & operating 
decisions by an individual firm.. 
• E.g., capacity expansion, production costing 

models
• Individual firm models can be assembled into 

market models
Top-down models start with an aggregate market 
representation (e.g., supply curve for power, rather 
than outputs of individual plants).
• Often consider interactions of multiple markets
• E.g., National energy models
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Functions of Process Model: Firm Level Functions of Process Model: Firm Level 
DecisionsDecisions

Real time operations:
• Automatic protection (<1 second): auto. generator control 

(AGC) methods to protect equipment, prevent service 
interruptions.  (Responsibility of: Independent System 
Operator ISO)

• Dispatch (1-10 minutes): optimization programs (convex) min. 
fuel cost, s.t. voltage, frequency constraints (ISO or 
generating companies GENCOs)

Operations Planning:
• Unit commitment (8-168 hours).  Integer NLPs choose which 

generators to be on line to min. cost, s.t. “operating reserve” 
constraints (ISO or GENCOs)

• Maintenance & production scheduling (1-5 yrs): schedule fuel 
deliveries & storage and maintenance outages (GENCOs)
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Firm Decisions Made Using Process Models, Firm Decisions Made Using Process Models, 
ContinuedContinued

Investment Planning
• Demand-side planning (3-15 yrs): implement programs to 

modify loads to lower energy costs (consumer, energy 
services cos. ESCOs, distribution cos. DISCOs)

• Transmission & distribution planning (5-15 yrs):  add circuits 
to maintain reliability and minimize costs/ environmental 
effects (Regional Transmission Organization RTO)

• Resource planning (10 - 40 yrs): define most profitable mix of 
supply sources and D-S programs using LP, DP, and risk 
analysis methods for projected prices, demands, fuel prices 
(GENCOs)

Pricing Decisions
• Bidding (1 day - 5 yrs): optimize offers to provide power, 

subject to fuel and power price risks (suppliers)
• Market clearing price determination (0.5- 168 hours): maximize 

social surplus/match offers (Power Exchange PX, marketers)
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Emerging Uses of Process ModelsEmerging Uses of Process Models

Profit maximization rather than cost minimization 
guides firm’s decisions
Market simulation:
• Use model of firm’s decisions to simulate market.  

Paul Samuelson: 
MAX {consumer + producer surplus} 

⇔ Marginal Cost Supply = Marg. Benefit Consumption 
⇔ Competitive market outcome

Other formulations for imperfect markets
• Price forecasts
• Effects of environmental policies on market 

outcomes (costs, prices, emissions & impacts, 
income distribution)

• Effects of market design & structure upon market 
outcomes
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Advantages of Process Models for Policy Analysis & Advantages of Process Models for Policy Analysis & 
Market DesignMarket Design

Explicitness:
• Model changes in technology, policies by altering:

– decision variables
– objective function coefficients
– constraints

• assumptions can be laid bare
Descriptive uses:

• Texture! Detailed impacts of policy
• Costs, emission, technology choices, market 

prices, consumer welfare
Normative:

• identify better solutions through use of optimizatio
• show tradeoffs among policy objectives
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II.A  Operations Model: II.A  Operations Model: 
1. System Dispatch “Linear Program”1. System Dispatch “Linear Program”

Basic model
• Cost minimization, pure thermal system, deterministic

In words:
• Choose level of operation of each generator (decision variable),
• …to minimize total system cost (objective)
• …subject to load, capacity limit (constraints)

Decision variable:
yit = megawatt [MW] output of generating unit i (i=1,..,I) during 

period t (t=1,..,T)
Coefficients:

CYit = variable operating cost [$/MWh] for yit

Xi = MW capacity of generating unit i. 
LOADt = MW demand to be met in period t
Ht = length of period t [hours/yr].  (Note: in pure thermal system,

periods do not need to be sequential)
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Operations LPOperations LP

MIN   Variable Cost = Σi,t Ht CYit yit

subject to constraints:

Meet load:

Σi yit = LOADt ∀t

Generation no more than capacity:

yit < Xi ∀i,t

Nonnegativity:

yit > 0 ∀i,t

This is a “Linear Program” (i.e., objective, 
constraints are linear in decision variables)

1414

Operations LP ExerciseOperations LP Exercise

Two generation types
A: Peak: 800 MW, MC = $70/MWh
B: Baseload: 1500 MW, MC = $25/MWh

Load
Pk: Peak: 2200 MW, 760 hours/yr

OP: Offpeak: 1300 MW, 8000 hours/yr
• Assignment:

- Write down LP
- What is best solution (by inspection?)
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EXCEL Solver Model for Cost MinimizationEXCEL Solver Model for Cost Minimization
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Operating Model Formulation, Continued: Operating Model Formulation, Continued: 
ComplicationsComplications

Other objectives 
Max Profit? Min Emissions?

Energy storage 
Pumped storage, batteries, hydropower

Explicitly stochastic 
Usual assumption: forced outages are random and
independent

Transmission constraints
Commitment variables 

E.g., start-up costs
Cogeneration
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II.A.2. Unit Commitment:II.A.2. Unit Commitment:
A Mixed Integer ProgramA Mixed Integer Program

Disregard forced outages & fuels; assume:
• uit = 1 if unit i is committed in t (0 o.w.)
• CUi = fixed running cost of i if committed
• MRi = “must run” (minimum MW) if committed
• Periods t =1,..,T are consecutive, and Ht=1
• RRi = Max allowed hourly change in output

MIN   Σi,t CYit yit + Σi,t CUi uit

s.t. Σi yit = LOADt ∀t
MRi uit < yi < Xi uit ∀i,t
-RRi < (yit - yi,t-1) < RRi ∀i,t
yit > 0    ∀i,t; uit ∈{0,1}      ∀i,t
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II.A.3.  Using Operating Models to Assess II.A.3.  Using Operating Models to Assess NONOxx

RegulationRegulation
((LeppitschLeppitsch & Hobbs, IEEE Trans. Power Systems, 1996)& Hobbs, IEEE Trans. Power Systems, 1996)

NOx: an ozone precursor 

N2 + O2  + heat → NOx

NOx + VOC +     O → O3

Power plants emit ~1/3 of anthropogenic NOx
in USA

Policy question: How effectively can NOx limits 
be met by changed operations (“emissions 
dispatch”)?
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FrameworkFramework

We want less cost and less NOx 

Cost
Inefficient

Efficient

NOx 

=Alternative =Alternative 
dispatch orderdispatch order

2020

How To Generate AlternativesHow To Generate Alternatives

Solve the following model for alternative levels 
of the regulatory constraint:

MIN      Σi CYi yi

s.t. 1.   MRi < yi < Xi (note nonzero LB)

2.   Σi yi > LOAD (MW)

3.   Σi Ei yi < MASS CAP (tons)

Note: MR, X, LOAD vary (used a stochastic programming method: 
probabilistic production costing with side constraints)

Data: 11,400 MW peak and 12,050 MW of capacity, 
mostly gas and some coal.  Most of capacity has 
same fuel cost/MBTU.  Plant emission rates vary by 
order of magnitude (0.06 - 0.50 lb/MBTU)
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CostCost--Emissions TradeoffsEmissions Tradeoffs
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The cost of reducing emissions by 20% is 
$70M (a 5% increase in fuel cost).
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II.B.1.  Deterministic Investment Analysis: II.B.1.  Deterministic Investment Analysis: 
LP Snap Shot AnalysisLP Snap Shot Analysis

Let generation capacity xi [MW] now be a variable,  with 
(annualized) cost = CXi [$/MW/yr]

MIN   Σi,t Ht CYit yit + Σi CXi xi

s.t. Σi yit = LOADt ∀t

Σf yit - xi < 0 ∀i,t

Σi xi > LOAD1 (1+M)   (“reserve margin” constraint)

yit > 0    ∀i,t

xi > 0    ∀i
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Some ComplicationsSome Complications

Dynamics (timing of investment)

Plants available only in certain sizes

Retrofit of pollution control equipment

Construction of transmission lines

“Demand-side management” investments

Uncertain future (demands, fuel prices)

Other objectives (profit)

2424

Planning LP ExercisePlanning LP Exercise

Two generation types
A: Peak: 800 MW, MC = $70/MWh

Operating Cost = $70/MWh
Capital Cost = $70,000 / MW/yr

B: Baseload: 
Operating Cost = $25/MWh
Capital Cost = $120,000 / MW/yr

Load
Peak: 2200 MW, 760 hours/yr
Offpeak: 1300 MW, 8000 hours/yr
Reserve Margin: 15%

Assignment:
Write down LP
What is best solution (by inspection?)
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Example Capacity Expansion Analysis: Example Capacity Expansion Analysis: 
Costs of Maryland Joining the Regional Costs of Maryland Joining the Regional 

Greenhouse Gas InitiativeGreenhouse Gas Initiative

RGGI: CO2 trading program for generators in 
Northeastern US states 
Maryland Healthy Air Act (2006): Requires a 
study of the reliability and cost impacts of 
Maryland joining RGGI
Also: what are the emissions effects?  What is 
the effect of CO2 “leakage”?  How is this 
affected by market power?
Tools:

Haiku (Resources for the Future competitive market 
model—includes capacity expansion)
JHU market power model
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Maryland Joining the Regional Greenhouse Gas Maryland Joining the Regional Greenhouse Gas 
Initiative: FindingsInitiative: Findings

Report, University of Maryland, January 2006 (Report, University of Maryland, January 2006 (www.cier.umd.eduwww.cier.umd.edu))

Emissions modestly lower 
-10% for Maryland; -4% for RGGI
Some offset by leakage

Electricity demand decreases due to DSM programs, 
consumers save money
Generator profits drop, but few plant closures
Maryland Generation Mix in 2015
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II.C  Including Transmission:II.C  Including Transmission:
or Why Power Transport is Not Like Hauling or Why Power Transport is Not Like Hauling 

Apples in a CartApples in a Cart

Review of “Laws”
Weird implications
Calculating “Load Flow”
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Review of DC Circuit LawsReview of DC Circuit Laws

Ohm’s Law:
• VA - VB =  IAB*RAB

• Voltage difference proportional to current * resistance

VA VB

IAB

A

B C

D

Kirchhoff’s Current Law:
• No net current inflow to a node
• Σ j IAj = 0

VA

VB VC

Kirchhoff’s Voltage Law:

• Sum of voltage differences around any loop = 0
• (VA - VB) + (VB - VC) + (VC - VA) = 0
• Sub in Ohm’s Law: IAB*RAB + IBC*RBC + ICA*RCA = 0

Losses:

• LAB =  IAB
2 RAB

• Doubling the current implies four times the losses
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Implications of LawsImplications of Laws

Use laws to calculate flows

• If you know power generation and consumption at                 every 

“bus” except the “swing bus”, then ...

• The “load flow” (currents in each line, voltages at each        bus) 

are uniquely determined by Kirchhoff’s two laws!

• This is the “load flow” problem

A B

Some odd byproducts of laws:

• Can’t “route” flow

• Parallel flows

• Transmission paths (e.g., choosing which German-Dutch interface to 

buy) are a fiction

• What you do affects everyone else

• Adding a line can worsen transmission capacity of system
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AC Load Flow is More ComplexAC Load Flow is More Complex

Voltage at each bus is sinusoidal (with RMS 
amplitude and phase angle), as are line currents

“Reactive” (vs. “real” power) a result of “reactance” 
(capacitance and inductance)

This is the power stored and released in magnetic 
fields of capacitors and inductors as the current 
changes direction

Although reactive power doesn’t do useful work, it 
causes resistance losses & uses up capacity

IAB
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““DC” Linearization of AC load flowDC” Linearization of AC load flow

Assumptions
• Assume reactance >> resistance
• Voltage amplitude same at all buses
• Changes in voltage angles θA-θB from one end of a line to 

another is small

Results:
• Power flow tAB proportional to:

– current IAB

– difference in voltage angle θA-θB

• Analogies to Kirchhoff’s Laws:
– Current law at A: Σi yiA = Σ neighboring m tAm + LOADA

– Voltage law:   tAB*RAB + tBC*RBC + tCA*RCA = 0

• Given power injections at each bus, flows are unique

3232

Example of “DC” Load FlowExample of “DC” Load Flow

A

B C

All lines have 
reactance = 1

~ A

B C

~
100 MW

100 MW

67 MW

33 MW

33 MW

Kirchhoff’s Current Law at C:
+33 + 67 - 100 = 0

Kirchhoff’s Voltage Law:
1*33 + 1*33 + 1*(-67) = 0

A

B C

~
300 MW

300 MW

200 MW

100 MW

100 MW

Proportionality!
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Proportionality means “Power Transmission Distribution Factors” Proportionality means “Power Transmission Distribution Factors” can be used can be used 
to calculate flowsto calculate flows

A

B C

All lines have 
reactance = 1

~ A

B C

~
100 MW

100 MW

67 MW

33 MW

33 MW

A

B C

~
300 MW

300 MW

200 MW

100 MW

100 MW

PTDFmn,jk = the MW flowing from j to k, if 1 MW is injected at m and 1 MW is
removed at n

E.g., PTDFAC,AB = 0.33
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Principle of SuperpositionPrinciple of Superposition

A

B C

~
100 MW

100 MW

67 MW

33 MW

33 MW

A

B C

~
50 MW

50 MW

17 MW

33 MW

17 MW

A

B C

~
100 MW

150 MW

83 MW

67 MW

17 MW

~
50 MW

+ =
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Using Using PTDFsPTDFs to Calculate Total Flowto Calculate Total Flow

A

B C

~
100 MW

100 MW

67 MW

33 MW

33 MW

A

B C

~
50 MW

50 MW

17 MW

33 MW

17 MW

A

B C

~
100 MW

150 MW

83 MW

67 MW

17 MW

~
50 MW

+ =

Total flow from B to C = PTDFAC,BC*100 + PTDFBC,BC*50  
= 0.33*100 + 0.67*50 = 67 MW
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Exercise in Transmission ModelingExercise in Transmission Modeling

Assumptions
• Triangle network, equal reactances

– Line from A to C: 100 MW limit

• Two plants: 
A: MC = 25 $/MWh
B: MC = 70 $/MWh

• Load:
A: 400 MW
B: 500 MW

What’s the optimal dispatch?
What’s the marginal cost of meeting an increase of 1 
MW of load at A; at B; at C?

A

B
C

~
25 $/MWh

400 MW

~
70 $/MWh

500 MW

100 MW Limit
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LinearizedLinearized Transmission Constraints Transmission Constraints 
in Operations LPin Operations LP

MIN   Variable Cost = Σm Σi,t Ht CYim yimt

subject to:

Net Injection: Σi yimt - LOADtm = zmt ∀t,m

Injection Balance: Σm zmt = 0 ∀t

GenCap: yimt < Xim ` ∀i,m,t

Transmission:   Tk- < [Σm PTDFmk zmt] < Tk+     ∀k,t

yimt > 0 ∀i,m,t

yimt = MW from plant i, at node m, during t

zmt = Net MW injection at node m, during t

3838

LinearizedLinearized Transmission Constraints Transmission Constraints 
in Operations LP: Exercise Examplein Operations LP: Exercise Example

MIN   Variable Cost = 25yA +70yB

subject to:

Net Injection: yA - 400 = zA

yB - 500 = zB

Injection Balance: zA + zB = 0
Transmission:   -100 < [ 0.33zA + 0.0 zB ]  < +100

Nonnegativity:
Note: In calculating PTDFs, I assume that all injections “sink” at 
node B

• E.g., injection zA at A is assumed to be accompanied by an equal       
withdrawal -zA at B
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III.  Mathematical Programming Models of Perfectly III.  Mathematical Programming Models of Perfectly 
Competitive Energy MarketsCompetitive Energy Markets

A.  An Equivalency ResultA.  An Equivalency Result

Definition of pure competition market equilibrium:
Each player maximizes their profit, subject to fixed prices (no 
market power)
Market clears (supply = demand)

Assemble:
“First order” optimization conditions for players
Market clearing 

This yields set of simultaneous equations that can be solved for
a market equilibrium

Same set of equations are first order conditions for a 
single optimization model (MAX net social welfare)

MAX (Area under demand curves)-(Cost)
Results in intersection of demand + supply curves

Widely used in energy policy analysis
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Applications of the Pure Competition Applications of the Pure Competition 
Equivalency PrincipleEquivalency Principle

MARKAL: Used by Intl. Energy Agency countries for analyzing 
national energy policy, especially CO2 policies

US Project Independence Evaluation System (PIES) & successors 
(W. Hogan, "Energy Policy Models for Project Independence," Computers and Operations Research, 2, 251-
271, 1975; F. Murphy and S. Shaw, "The Evolution of Energy Modeling at the Federal Energy Administration 
and the Energy Information Administration," Interfaces, 25, 173-193, 1995.)

US Natl. Energy Modeling System (C. Andrews, ed., Regulating Regional Power 

Systems, Quorum Press, 1995, Ch. 12, M.J. Hutzler, "Top-Down: The National Energy Modeling System".)

ICF Coal and Electric Utility Model (http://www.epa.gov/capi/capi/frcst.html)

Acid rain, Clear Skies, Clean Air Interstate Rule

POEMS (http://www.retailenergy.com/articles/cecasum.htm)

Economic & environmental benefits of US restructuring

Some of these modified to model imperfect competition (price 
regulation, market power)
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B.B. Equilibrium Model FormulationsEquilibrium Model Formulations
Meet the Meet the FOC’ersFOC’ers: : 

“First Order Conditions” for Optimization“First Order Conditions” for Optimization

Let an optimization problem be:
MAX F(X)

{X}

s.t.:  G(X) ≤ 0
X ≥ 0

Assume F(X) smooth/concave, G(X) smooth/convex.

{
{

XX

λ

A solution {X,λ} to the KKT (“Karush-Kuhn-Tucker”) 
conditions below is optimal for the above problem, and 
vice versa. “KKTs necessary & sufficient for optimality.”

X ≥ 0;       ∂F/∂X - λ ∂G/∂X ≤ 0; 
X(∂F/∂X - λ ∂G/∂X) = 0

λ ≥ 0; G(X) ≤ 0; 
λG(X) = 0
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““PerpPerp” Notation for the ” Notation for the FOC’ersFOC’ers: : 

Let an optimization problem be:
MAX F(X)

{X}

s.t.:  G(X) ≤ 0
X ≥ 0

The KKT’s, written in “perp” notation, are:

{
{

XX

λ

0≤X ⊥ ∂F/∂X - λ ∂G/∂X ≤ 0

0≤ λ ⊥ G(X) ≤ 0
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Notation:  Each node i is a separate commodity (type, Notation:  Each node i is a separate commodity (type, 
location, timing)location, timing)

i

Consumer: Buys di

Supplier f: Uses inputs xfi to
produce & sell sfi

di

sfi

Other
suppliers

j
Transporter/Transformer: 
Uses exports tEij from i to

provide imports tIij to j

tEij
tIij

hh

4444

Players’ Profit Maximization ProblemsPlayers’ Profit Maximization Problems

Supplier f at i:
MAX pi

*sfi - CSfi(xfi)
{sfi,xfi}

s.t.  GSfi(sfi,xfi) ≤ 0    (μfi)
sfi,xfi ≥ 0

Consumer at i:
MAX   Bi(di) - pi

* di
{di}

s.t. di ≥ 0

Transporter for nodes i,j:
MAX  pj

* tIij − pi
* tEij − CTij(tEij,tIij)

{tEij,tIij}

s.t. GTij(tEij,tIij) ≤ 0   (θij)
tEij,tIij ≥ 0

ii

jj
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Players’ Profit Maximization ProblemsPlayers’ Profit Maximization Problems

Supplier FOCs/KKTs at i
--one for each decision variable
--one for each constraint

Consumer FOCs/KKTs at i :
--one for each decision variable
--one for each constraint 

Transporter FOCs/KKTs for i,j:
--one for each decision variable
--one for each constraint

ii

jj
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KKTsKKTs for All Players in Market Game for All Players in Market Game 
+ Market Clearing Condition+ Market Clearing Condition

Supplier FOCs/KKTs, ∀i
--one for each decision variable
--one for each constraint

Consumer FOCs/KKTs , ∀i :
--one for each decision variable
--one for each constraint 

Transporter/Transformer KKTs, ∀ij
--one for each decision variable
--one for each constraint

Market
Clearing, ∀ i:

pi
*: ∑f sfi

+∑j∈I(i) tIji

−∑j∈E(i) tEij

−di

= 0

N conditionsN conditions
& N unknowns!& N unknowns!
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An Optimization Model for Simulating a An Optimization Model for Simulating a 
Commodity MarketCommodity Market

MAX   (Value of Consumption) - (Production, Transport Cost)

MAX ∑i Bi(di)        − ∑fi CGi(xfi) − ∑ij CTij(tEij,tIij)
{di, sfi, xfi, tEij, tIij}

s.t.   Production Functions for each firm:
GSi(si, xi) ≤ 0, ∀i
GTij(tEij, tIij) ≤ 0, ∀ij

Market Clearing for each commodity:

∑f sfi + ∑j∈I(i) tIji - ∑j∈E(i) tEij - di = 0, ∀i

…and the usual nonnegativity conditions

Its FOC conditions = market equilibrium conditions for 
the purely competitive commodities market!  So:

• a single NLP can simulate a market
• a purely competitive market maximizes social surplus

4848

MAX Social Surplus = Σt B(dt) — Σi,t Ht CYit yit

subject to constraints:

Meet load:

−Σi yit + dt = 0 ∀t

Generation no more than capacity:

yit < Xi ∀i,t

Nonnegativity:

yit > 0 ∀i,t

An Optimization Model for An Optimization Model for 
Simulating a Competitive Energy MarketSimulating a Competitive Energy Market

This is a “Quadratic Program” (i.e., objective, constraints 
are either linear or quadratic in decision variables)
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Competitive Model Example Competitive Model Example 

Perfect competition
• Company 1: CY1 = 2, X1  = 5

• Company 2: CY2 = 3, X2  = 5

• Demand: p = 10 – d = 10 – (y1 + y2)

10

10

p

5

2
CY1 = 2 ; X1  = 5

Demand function

Competitive 
supply function

CY2 = 3; X2  =5
3

Equilibrium in perfect 
competition

7

d = y1 + y2
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Competitive Model Example Competitive Model Example 

10

10

p

5

2

Integral under demand 
curve minus production 
costs

d = y1 + y2

PROFIT

CONSUMER
SURPLUS

Perfect competition
• Company 1: CY1 = 2, X1  = 5
• Company 2: CY2 = 3, X2  = 5
• Demand: p = 10 – d = 10 – (y1 + y2)
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Excel Solver Perfect Competition ModelExcel Solver Perfect Competition Model
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General Procedure forGeneral Procedure for
Building Equilibrium ModelsBuilding Equilibrium Models

Not all equilibrium problems can be formulated as optimization 
problems

• Complementarity models are more general
– Some but not all complementarity equilibrium problems have an 

equivalent optimization problem
– But all convex optimization problems have an equivalent equilibrium 

(KKT) problem

Five steps:
1. Formulate optimization submodel for each market party
2. Derive KKTs for each party’s submodel
3. Create a complementarity problem consisting of those conditions 

for all parties plus market clearing
• Should be as many conditions (either perp or equality) as variables.  As check, 

associate one variable with each condition
• Types of complementarity problems include linear/nonlinear, nonmixed/mixed 

(without or with equality conditions, each with a matching unrestricted variable)

4. Analyze resulting problem for existence, uniqueness, other 
properties

5. Parameterize & solve
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III.C.  Commodity ModelingIII.C.  Commodity Modeling
ExerciseExercise

1.  Draw a diagram representing the following market 
structure:

Two electricity companies in California
Use two commodities as inputs: 

1. NOx emissions allowances
2. Natural gas

Sell power in offpeak and peak electricity markets
Supply of NOx emission allowances auctioned by EPA
Natural gas produced by companies in Texas, and piped to 
California

2. Write an optimization problem that gives an 
equivalent solution

3. Homework: Write optimization problem for each party 
& derive a complementarity problem (in very general 
terms) that would represent a competitive equilibrium

Assume all parties are ‘price takers’
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IV. Strategic Market Modeling: IV. Strategic Market Modeling: OligopolyOligopoly
A.  ConceptsA.  Concepts

Oligopoly or imperfect competition is the 
most representative market structure in real
electric power markets

• Small number of large generating firms. 

Imperfect market analysis and modelling is 
more complex

• Each generator must bear in mind the interdependence
between its decisions and the decisions of all other agents

• This strategic interdependence varies with the time 
horizon of the decisions to be made
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Market Power = Ability to manipulate prices persistently to one’Market Power = Ability to manipulate prices persistently to one’s s 
advantage, independently of the actions of othersadvantage, independently of the actions of others

Generators: The ability to raise prices above 
marginal cost by restricting output

Generators may be able to exercise market 
power because of:
• economies of scale
• large existing firms
• transmission costs, constraints
• siting constraints, long lead time for generation 

construction
• dumb market designs
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Types of GamesTypes of Games

Noncooperative Games (Symmetric): Each 
player has same “strategic variable”  

– Each player implicitly assumes that other players 
won’t react.

– “Nash Equilibrium”: no player believes it can do 
better by a unilateral move

Let πi(Xi,X-i) = i’s profit, a function of i’s
strategy Xi and everyone else’s strategy X-i

Nash equilibrium {Xi
*,X-i

*} occurs if:
πi(Xi*,X-i*) > πi(Xi,X-i*) 

for all feasible Xi, and for all i
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Types of Games (Continued)Types of Games (Continued)

• Examples of Nash Games:
– Bertrand (Game in Prices).  Implicit: You believe 

that market prices won`t be affected by your 
actions, so by cutting prices, you gain sales at 
expense of competitors.

• COMPETITIVE COMMODITY MODEL!

QQ

BidBid

– Supply function (Game in Bid Schedule): Implicit: 
You believe that competitors won’t alter supply 
functions they bid 

– Cournot (Game in Quantities): Implicit: You 
believe that if you change your output, your 
competitors will maintain sales by cutting or 
raising their prices
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Digression: History QuizDigression: History Quiz

What was the profession of John Nash’s 
father?

Electric power engineering
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Types of Games (Continued)Types of Games (Continued)

• Noncooperative Game (Asymmetric/Leader-Follower): Leader 
knows how followers will react.

– E.g.: strategic generators anticipate: 
• how a passive ISO prices transmission
• competitive fringe of small generators, consumers

– “Stackelberg Equilibrium”
– Multiple leaders possible:

• Several large generators competiting a la Nash with each 
other, but each anticipating reaction of ISO (transmission 
pricing) and fringe generators (outputs)

• Cooperative Game (Exchangable Utility/Collusion): Max joint 
profit.

– E.g., competitors match your changes in prices or output
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Three General GeneratorThree General Generator--Transmission Transmission 
GamesGames

Simultaneous Game: Each takes other’s decisions as fixed

Gen 1Gen 1 Sales 1Sales 1 Gen n Gen n Sales n Sales n ISOISOTransmission Transmission 
priceprice

TransTrans
priceprice

Sequential Game: 
--Single Leader anticipates 
Follower’s reactions
--Follower takes leader’s decisions 
as fixed

Big Gen 1Big Gen 1

Sales 1Sales 1

Small Gen n Small Gen n ISOISO

Sales n Sales n 

Multiple Leader-Follower:
--Each leader anticipates 
follower’s reactions
--Each leader takes other’s 
decisions as fixed

Gen n  Gen n  
Sales nSales n

TransTrans
priceprice

Gen 1  Gen 1  
Sales 1Sales 1

ISOISO
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B. Computation Methods for Nash (Simultaneous) B. Computation Methods for Nash (Simultaneous) 
GamesGames

Simple ExampleSimple Example

1. Payoff Matrix: Enumerate all combinations of player 
strategies; look for stable equilibrium

2. Iteration/Diagonalization/Alternate Play/Gauss-
Seidel:  Simulate player reactions to each other until 
no player wants to change

3. Direct Solution of Equilibrium Conditions:  Collect 
FOCs/KKTs for all players; add market clearing 
conditions; solve resulting system of conditions 
directly

– Usually involves complementarity conditions

4. Equivalent Optimization: May exist a single 
optimization model that gives same solution 
(“Hashimoto”)
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Strategic Modeling ExerciseStrategic Modeling Exercise

• Two Cournot generators (competing on 
quantity)

– Sell output in ISO day ahead market
• Strategic variables is quantity bid

– “Locational marginal pricing” – “first price 
auction” -- market clearing price

– Equivalent to bilateral contracting with efficient 
arbitrage

• Solve example with 4 methods
• Variant: “Pay as Bid”

– Strategic variable is price bid
– No single price; if cut price, you might sell more, 

but at a lower price
– Also try to solve with payoff matrix
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Strategic Modeling Exercise:Strategic Modeling Exercise:
CournotCournot/Quantity Model/Quantity Model

Each firm i's marginal cost = yi , i = A,B  (Total 
cost = 0.5 yi

2)
Demand function: p = 100 - d/2 [$/MWh]

yyii

MCMCii

11
11

dd

100100

pp
1/21/2

11
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Strategic Modeling Exercise:Strategic Modeling Exercise:
CournotCournot/Quantity Equilibrium/Quantity Equilibrium

Firm A: MAX πΑ(yA,yB) = P(yA+yB)yA - CA(yA) 
= (100 - 0.5(yA+yB))yA - 0.5yA

2

s.t. yA> 0
• KKTs: 0 < yA ⊥ P + P′yA - MCA < 0

or 0 < yA ⊥ (100 - yA-0.5yB) - yA < 0

Firm B: MAX πΒ(yA,yB) 
= MAX (100 - 0.5(yA+yB))yB - 0.5yB

2

s.t. yB> 0
• KKTs: 0 < yB ⊥ (100 - yA-0.5yB) - yB < 0

Market clearing: d = yA + yB

The market participant’s KKTs + market 
clearing form a complementarity problem
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Method 1:Method 1:

πA

6666

Method 2: Method 2: DiagonalizationDiagonalization/Iteration Method/Iteration Method

Optimal reaction of Firm A to yB is found by maximizing
πΑ(yA,yB) w.r.t. yA .  The resulting KKT condition that 
defines the optimal response yA is:

0 < yA ⊥ dπΑ(yA,yB)/dyA < 0, or:
0 < yA ⊥ (100 - yA-0.5yB) - yA < 0

If the optimal yA > 0, then yA =50 - yB/4 is the optimal 
reaction.  A similar development given B’s optimal 
reaction to yA as yB = 50 - yA/4. 
Tennis anyone?

= initial point
Iteration # yA yB

0 70
1 32.5
2 41.875
3 39.531
4 40.117
5 39.971
6 40.007
7 39.998
8 40.0005
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Method 3: Mixed Linear Method 3: Mixed Linear ComplementarityComplementarity
Problem StatementProblem Statement

Mixed LCP statement: Find {yA, yB, d} such that 
the following conditions are satisfied: 
• Firm A: 0 < yA ⊥ (100 - yA-0.5yB) - yA < 0
• Firm B: 0 < yB ⊥ (100 - 0.5yA-yB) - yB < 0
• Market clearing:  d = yA + yB

Mixed LCP: Has equalities as well as 
complementarity conditions
Well-formulated problem will have equal 
number of variables and conditions
Could use PATH to solve this problem
• Lemke’s algorithm
• Iteratively linearizes for NCP
• Solution: yA = yB = 40 MW; d = 80 MW; P(yA+yB) = 60 

$/MWh
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Method 4: Single Equivalent Optimization Method 4: Single Equivalent Optimization 
Problem (Hashimoto 1985)Problem (Hashimoto 1985)

Consider the following MP:

MAX      (100-q/2)dq - (yA
2/4 + yB

2/4) - CA(yA)-CB(yB)

s.t. d - yA - yB = 0;      yA,yB > 0

⌠d

⌡0

First term: integral of demand curve.  If the underlined 
term was omitted, this would be the standard welfare 
max (perfect competition) model.  
• Underlined term modifies customer value term (integral) so that 

the derivative of {integral + underscored term} w.r.t. yf is the 
marginal revenue (MR) for a Cournot firm f rather than price.

KKT conditions =equilibrium conditions (Method 3) 
But it is not always possible to define a single 
optimization problem whose KKTs match the 
equilibrium conditions of a hypothetical market
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Method 4: Excel Solver Method 4: Excel Solver CournotCournot ModelModel
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Example of Nonexistence of Pure Strategy Example of Nonexistence of Pure Strategy 
EquilibriaEquilibria

Definitions:
• Pure strategy equilibrium: A firm i chooses Xi* with 

probability 1
• Mixed strategy: Let the strategy space be 

discretized {Xih, h =1,..,H}. In a mixed strategy, a 
firm i chooses Xih with probability Pih < 1.  The 
strategy can be designated as the vector Pi

– Can also define mixed strategies using continuous 
strategy space and probability densities

– Let Pi
c = {Pj, ∀ j ≠i}

• Mixed strategy equilibrium: {Pi*, ∀i} is mixed 
strategy Nash Equilibrium iff:

πi(Pi*,Pi
c*) > πi(Pi,Pi

c*), ∀ i; ∀ Pi: Σh Pih =1, Pih>0

By Nash’s theorem, a mixed strategy equilibrium 
always exists (perhaps in degenerate pure strategy 
form) if strategy space finite.
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Another Example But with a Difference: Pay as Bid Case:  Another Example But with a Difference: Pay as Bid Case:  

7272

C.  A C.  A CournotCournot TransmissionTransmission--Constrained ModelConstrained Model

Features:
• Bilateral market (generators sell to customers, buy 

transmission services from ISO)
• Cournot in power sales
• Generators assume transmission fees fixed; 

linearized DC load flow formulation
• If there are arbitragers, then same as POOLCO 

Cournot model
– In which generators sell to “single buyer”

• Mixed LCP formulation: allows for solution of very 
large problems
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Adding Transmission (and other commodities!)Adding Transmission (and other commodities!)

Transmission 
Constraint

1 2

A B

d1

P1(d1)

d2

P2(d2)

NOx Market

Power Market
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Simple Example of Model:Simple Example of Model:
Generation Duopoly with Arbitrage and Transmission Generation Duopoly with Arbitrage and Transmission 

ConstraintConstraint

50 MW

p1
p2A

CA(sA1+ sA2)

a1,2

sA2

sA1 B

CB( )

sB1

sB2w1,2 = 
Price Transmission 

from 1 to 2

d1

P1(d1)

d2

p2(d2)
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Perfect Competition ModelPerfect Competition Model
Everyone a price taker w.r.t. nodal energy prices Everyone a price taker w.r.t. nodal energy prices PP11, , PP22, and transmission price , and transmission price 

WW1,21,2

Equilibrium problem: Find {p1, p2, w1,2 , sA1, sA2, sB1, sB2, a1,2, y1,2}  that 
simultaneously solve the following problems: 

Gen A: Given {p1, p2, w1,2}:
MAX p1sA1 + p2sA2 - w1,2 sA2 - CA(sA1+sA2)

{sA1, sA2 > 0} 

Gen B: Given {p1, p2, w1,2}:
MAX p1sB1 + p2sB2 +w1,2 sB1 - CB(sB1+sB2)

{sB1, sB2 > 0}

Arbitrager: Given {p1, p2, w1,2 }:
MAX (p2- p1 -w1,2)a1,2

{a1,2}

TSO: Given {w1,2 }:
MAX w1,2 y1,2
{y1,2}

s.t.      -50 < y1,2 < +50 

Market clearing:  d1 = -a1,2 + sA1 + sB1

d2 = +a1,2 + sA2 + sB2

y1,2 = a1,2 + sA2 - sB1

Consumer 2: Given {p2}:
MAX ∫0

d2 P2(x)dx - p2 d2
{d2 > 0}

Consumer 1: Given {p1}:
MAX ∫0

d1 P1(x)dx - p1d1
{d1 > 0}
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Perfect Competition ModelPerfect Competition Model
Derive Derive KKTsKKTs for each player’s problem; combine with market clearing for each player’s problem; combine with market clearing 

conditionsconditions

Mixed LCP: Find {p1, p2, w1,2 , sA1, sA2, sB1, sB2, a1,2, y1,2, λ1,2
+, λ1,2

-}  that simultaneously 

solves the following mixed complementarity problem: 

Gen A:
0 < sA1 ⊥ (p1 - CA′) ≤ 0
0 < sA2 ⊥ (p2 - w1,2 - CA′) ≤ 0

Gen B:
0 < sB1 ⊥ (p1 + w1,2 - CB′) ≤ 0
0 < sB2 ⊥ (p2 - CB′) ≤ 0

Arbitrager:
p2- p1 -w1,2 = 0

TSO: w1,2 -λ1,2
++λ1,2

- = 0
0 < λ1,2

+ ⊥ y1,2 -50 < 0
0 < λ1,2

- ⊥ -y1,2 -50 < 0

Under mild conditions, solution (1) exists, (2) is unique

Market clearing:  d1 = -a1,2 + sA1 + sB1

d2 = +a1,2 + sA2 + sB2

y1,2 = a1,2 + sA2 - sB1

Consumer 1:
0 < d1 ⊥ P1(d1) - p1 ≤ 0

Consumer 2:
0 < d2 ⊥ P2(d2) - p2 ≤ 0
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OligopolisticOligopolistic GenerationGeneration
Naïve assumption that Generators are Bertrand (price takers) witNaïve assumption that Generators are Bertrand (price takers) with respect to h respect to 

transmission costs W transmission costs W (e.g., (e.g., WeiWei & & SmeersSmeers, 2000), 2000)

Equilibrium Problem: Find {w1,2 , sA1, sA2, sB1, sB2, a1,2, y1,2}  that 

simultaneously solve the following problems: 

Gen A: Given {w1,2 , sB1, s B2 ,a1,2 }:

MAX P1(d1)sA1 + P2(d2)sA2

{sA1, sA2 > 0; d1, d2}    - w1,2 sA2 - CA(sA1+sA2)

s.t.  d1 = - a1,2 + sA1 + sB1

d2 = + a1,2 +sA2 +sB2

Gen B: Given {w1,2 , sA1, sA2 ,a1,2 }:

MAX P1(d1)sB1 + P2(d2)sB2

{sB1, sB2 > 0; d1, d2}      +w1,2 sB1 - CB(sB1+sB2)
s.t.            d1 = - a1,2 + sA1 + sB1

d2 = + a1,2 +sA2 +sB2

Market clearing:  y1,2 = a1,2 + sA2 - sB1

TSO: Given {w1,2 }:
MAX w1,2 y1,2
{y1,2}

s.t.      -50 < y1,2 < +50 

Arbitrager: Given {p1, p2, w1,2 }:
MAX (p2- p1 -w1,2)a1,2

{a1,2}
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OligopolisticOligopolistic Generation Model Generation Model 
Derive Derive KKTsKKTs for each player’s problem; combine with market clearing conditifor each player’s problem; combine with market clearing conditions. ons. 

After rearrangement, we get:After rearrangement, we get:

Mixed LCP: Find {p1, p2, w1,2 , sA1, sA2, sB1, sB2, a1,2, y1,2, λ1,2
+, λ1,2

-}  that 

simultaneously solves the following mixed complementarity problem: 

Gen A:
0 < sA1 ⊥ (P1 - P1′sA1 - CA′) ≤ 0
0 < sA2 ⊥ (P2 - P2′sA2 - w1,2 - CA′) ≤ 0

Gen B:
0 < sB1 ⊥ (P1 - P1′sB1 + w1,2 - CB′) ≤ 0
0 < sB2 ⊥ (P2 - P2′sB2 - CB′) ≤ 0

Arbitrager:
P1 - P2 -w1,2 = 0

Market clearing:  d1 = -a1,2 + sA1 + sB1

d2 = +a1,2 + sA2 + sB2

y1,2 = a1,2 + sA2 - sB1

Under mild conditions, solution to resulting MCP (1) exists, (2) is unique, 
and (3) is equivalent to POOLCO Cournot equilibrium

TSO: w1,2 -λ1,2
++λ1,2

- = 0
0 < λ1,2

+ ⊥ y1,2 -50 < 0
0 < λ1,2

- ⊥ -y1,2 -50 < 0
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Simple Example of Model:Simple Example of Model:
Generation Duopoly with Arbitrage Generation Duopoly with Arbitrage 

and Transmission Constraintand Transmission Constraint

50 MW

P1
P2A

CA′
= 20

B

d1 = 550 

P1 =
100-.1d1

= 45

d2 = 650 

a1,2 = 50
CB′
= 0

sA2 = 250

sA1 =
250

sB1 = 350

sB2 

= 350

w1,2

= 10

P2 =
100-.1d2 

= 35
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D. A Large Scale D. A Large Scale CournotCournot Bilateral & POOLCO ModelBilateral & POOLCO Model
(B.F. Hobbs and U. (B.F. Hobbs and U. HelmanHelman, ", "ComplementarityComplementarity--Based Equilibrium Modeling for Electric Power Markets," in D.W. Based Equilibrium Modeling for Electric Power Markets," in D.W. 

Bunn (ed.), Modeling Prices in Competitive Electricity Markets, Bunn (ed.), Modeling Prices in Competitive Electricity Markets, J. Wiley, 2004)J. Wiley, 2004)

Features:
• Bilateral market (generators sell to 

customers, buy transmission services from 
ISO)

• Cournot in power sales
• Generators assume transmission fees fixed; 

linearized DC load flow formulation
• Mixed “linear complementarity” formulation: 

allows for solution of very large problems
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A Large Scale Implementation:A Large Scale Implementation:
Eastern Interconnection Model Eastern Interconnection Model 

100 nodes representing control areas and 15 
interconnections with ERCOT, WSSC, and 
Canada
829 firms (of which 528 are NUGs)
2725 generating plants (in some cases 
aggregated by prime mover/fuel type/costs); 
approximately 600,000 MW capacity
Implemented by FERC staff
• Spatial market power issues (congestion, addition 

of transmission constraints)
• Effects of mergers

A B
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Eastern Interconnection ModelEastern Interconnection Model

814 flowgates, each with PTDFs for each node  
(most flowgates and PTDFs defined by NERC; 
a mix of physical and contingency flowgate 
limits)

68 firms represented as Cournot players (with 
capacity above 1000 MW).  Remainder is 
competitive fringe
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Selected Market Power ResultsSelected Market Power Results

8484

Merger ExampleMerger Example
(Firm A at Node A, Firm B at Node B)(Firm A at Node A, Firm B at Node B)

pre-merger merger
Competition $22.17 $22.17

Cournot w/
arbitrage

$22.85 $22.86

Difference 3.07% 3.11%

Cournot Price
Node A

$18.89 $18.92

Cournot Price
Node B

$27.65 $27.66

Profits A+B=$162,723 AB=$162,400
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E. Advanced Models E. Advanced Models 
Desirable ImprovementsDesirable Improvements

(thanks to R. (thanks to R. BaldickBaldick, 2006), 2006)

Improved models of Physical system
•Better representation of technology constraints 
•The economist’s “production function”

Improved models of Commercial system
•Definition of products / markets
•“Settlement rules”: who gets paid what in each market

Improved models of Economic system
•Agent objectives
•Agent strategic variables
•Agent state of knowledge / expectations
•Agent cooperation
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Examples of Improved Models: Examples of Improved Models: 
GenerationGeneration

Better physical models
• Multiple periods and hydro (Bushnell 2002)

• Capacity additions 
– Make capacity & energy decisions at same time (“open loop”) (Wei, Smeers, 1999)

– Make capacity decisions anticipating effect on energy market (“closed loop”) 
(Murphy, Smeers, 2004)

• Emissions permits markets (*)

Better commercial models
• Locational operating reserves markets (Helman 2002; Bautista et al. 2005)

• Two-settlement systems: day ahead (perhaps zonal pricing) and real-
time (locational) (EPEC!) (Kamat & Oren, 2004)

Better economic models
• Forward contracts:

– Exogenous contracts (Green 2002)

– Endogenous contracts: Two stage models (EPECs!) (Yao, Oren, Adler 2005)

• Anticipate supply response of rivals
– Include fringe’s KKTs in leader’s constraint set (MPEC!)(Neuhoff et al.)

– “Conjectured supply response” (Day/Hobbs 2002)

– Inverse problem (estimate conjectural variations) (Garcia-Alcalde et al. 2002)

• Tacit collusion (multiperiod “supergames”) (Liu, Harrington, Hobbs, Pang, 2005)
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Examples of Improved Models: Examples of Improved Models: 
TransmissionTransmission

Better physical models:
• Linearized DC Load flow model (*)

– TSO constraints involve PTDFs
– Quadratic losses 

• AC Load flow model (Anjos, Bautista et al. 2006)

• Controllable DC lines, phase shifters in linearized DC load flow (Hobbs et al. 
2006)

Better commercial models: 
• Commercial rules results in (economically) imperfect transmission 
pricing

– Path-based models (Hobbs, Rijkers et al. 2003)

– No-netting of flows (use nonnegative flow variables for each direction) 
(Hobbs, Rijkers et al. 2003)

– Average cost-based tariffs (Wei and Smeers, 2000)

Better economic models:
• Generators anticipate transmission price changes

– Include TSO KKTs as constraints: MPEC! (e.g., Cardell/Hitt/Hogan 1997; Hobbs/Metzler/Pang 2000;  
Borenstein/Bushnell/Stoft 2000)

– Or “conjectured transmission price response” (MCP) (Hobbs/Rijkers 2003)
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Example of a Example of a StackelbergStackelberg (Leader(Leader--Follower) Follower) 
ModelModel

Large supplier as leader, ISO & other suppliers as 
followers in POOLCO market

Problem: choose bids BLi to max πL

MAX πL = Σi [PiyLi - Ci(yLi)]
s.t.   0 < yLi < Xi,  ∀i

KKTs for ISO (depend on BLi’s)
KKTs for other suppliers (price takers)

The Challenge: the complementarity conditions in the 
leader’s constraint set render the leader’s problem non-
convex (i.e., feasible region non-convex)

Algorithms for math programs with equilibrium constraints 
(MPECs) and equilibrium programs with equilibrium 
constraints (EPECs) are improving
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EPECEPEC
Sophisticated assumption that Generators are Sophisticated assumption that Generators are StackelbergStackelberg leader with respect leader with respect 

to transmission costs to transmission costs ww (e.g., Hobbs, Metzler, Pang, 2000)(e.g., Hobbs, Metzler, Pang, 2000)

Equilibrium Problem: Find {w1,2 , sA1, sA2, sB1, sB2, a1,2, y1,2}  that 

simultaneously solve the following problems: 

Gen A: Given {w1,2 , sB1, s B2 ,a1,2 }:

MAX P1(d1)sA1 + P2(d2)sA2

{sA1, sA2 > 0; d1, d2}    - w1,2 sA2 - CA(sA1+sA2)

s.t.  d1 = - a1,2 + sA1 + sB1

d2 = + a1,2 +sA2 +sB2

Gen B: Given {sA1, sA2 }:

MAX             p1(d1)sB1 + p2(d2)sB2

+W1,2 sB1 - CB(sB1+sB2)  
s.t.            d1 = - a1,2 + sA1 + sB1

d2 = + a1,2 +sA2 +sB2

Market clearing:  y1,2 = a1,2 + sA2 - sB1

Iteration/Diagonalization (Gauss-Seidel) among MPECs often used

Generally: pure strategy solutions may neither exist nor be unique

Market clearing:  y1,2 = a1,2 + sA2 - sB1

TSO: 50 > y1,2 ⊥ (w1,2 -λ1,2
+) ≤ 0

-50 < y1,2 ⊥ (-w1,2 -λ1,2
-) ≤ 0

TSO: 50 > y1,2 ⊥ (w1,2 -λ1,2
+) ≤ 0

-50 < y1,2 ⊥ (-w1,2 -λ1,2
-) ≤ 0

Arbitrager: p1- p2 -w1,2 = 0Arbitrager: p1- p2 -w1,2 = 0
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1 2

A B

d1

P1

d2

NOx Market

Power Market

P2

Stackelberg Leader
L

L’s decisions xL:
Allowances bought qNOx,L

Energy decisions yi,A,si,L

PNOx(xL)
Pi(xL)
Wi(xL)

StackelbergStackelberg
AnalysisAnalysis

Chen, Hobbs, Munson,Chen, Hobbs, Munson,
LeyfferLeyffer, Computational, Computational
Management Science, 2006,Management Science, 2006,
307307--330330
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= Stackelberg’s NOx withholding variable [tons]

= Firm’s available NOx allowances [tons]

StackelbergStackelberg Leader’s ProblemLeader’s Problem
The firm with a longest position in The firm with a longest position in NOxNOx market and greatest power sales is market and greatest power sales is 

designated as the leaderdesignated as the leader
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ISO’s decision variables:
= transmission service from hub to i
= make-up loss from node i
=  flow in arc (i,j)

ISO’s maximizes the “value of services” :

ISO Optimization ProblemISO Optimization Problem
Quadratic Loss FunctionsQuadratic Loss Functions

π

∈

∈

= −

− + − − ≤ ∀

− = ∀ ∈

=

≤ ≤ ∀

≥ ∀

∑
∑

∑
∑

( )

( , ) ( )

( , , ) ( )

. . : ( (1 ) ) 0,

( ) 0, ,( , ) ( )

0

0 , ,

0,

Losses Losses
ISO ij i i i i i ii

Losses
i i ij ji ji jij J i

ij ij jii j v k

ii

ij ij

Losses
i

MAX t z q W z p q

s t z q t L t t i

R t t k i j v k

z

t T i j

q i

Tij = capacity of line (i,j)

Kirchhoff’s Current Law

Kirchhoff’s Voltage Law

iz
Losses
iq

ijt

Services Balance

• Solution allocates transmission to most valuable transactions

Define the model’s KKTs (complementarity conditions), one per 
variable xISO
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Model StatisticsModel Statistics

18,618 variables; 9739 constraints
• Order of magnitude larger than test problems in R. 

Fletcher and S. Leyffer, “Numerical Experience 
with Solving MPECs as NLPs,” Univ. of Dundee, 
2002

Solved by PATH and SQP (SNOPT, FILTER) 
(Thanks to Todd Munson & Sven Leyffer!)

9,536 seconds (1.8 MHz Pentium 4)
• Other MPECs took much less time
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StackelbergStackelberg ResultsResults
Compared to the Cournot Case:

Stackelberg leader:
• withholds 5,5365,536 tons of allowances (7.27.2% of total available)

• … increasing NOx price from 0 to 1,173 [$/ton]

Output:
• other producers shrink their power salessales (87.487.4→→83.583.5 x106 MWh) 

due to increased NOx price

• … while the leader expands its output (24.624.6→→28.728.7 x106 MWh) 

Profit:
• Stackelberg leader earns more profit (893 893 →→ 970970 M$) 

• … at the expense of other producers (2394 2394 →→ 22732273 M$)

Consumers:
• are only marginally better off with a gain of 1414 [M$] in consumer 

surplus, as power prices are essentially unchanged
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V.  ConclusionV.  Conclusion

There are practical market models that capture key features of 
the market: 

Kirchhoff’s current & voltage laws,

transmission pricing, 

generator strategic behavior

Market features present computational & analytical challenges 
for the power engineering/O.R. researcher

Prices can’t be predicted precisely because games are repeated, 
and conjectural variations are fluid and more complex than can 
be modeled.  Models most useful for exploring issues/gaining 
insight--thus, simpler models preferred

MODELS ARE FOR INSIGHT, NOT NUMBERS!!!

Apply to market structure evaluation, market design, and 
strategic pricing

Need comparisons of model results with each other, and with 
actual experience
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Operations LP Answer:Operations LP Answer:
Model FormulationModel Formulation

MIN   760(70 yA,Pk + 25 yB,Pk)
+ 8000(70 yA,OP + 25 yB,OP)

subject to:

Meet load:

yA,Pk +  yB,Pk = 2200

yA,OP +  yB,OP = 1300

Generation < capacity:

yA,Pk < 800; yA,OP < 800

yB,Pk < 1500; yB,OP < 1500 

Nonnegativity: yA,Pk , yA,OP , yB,Pk , yB,OP > 0



9797

Operations LP Answer:Operations LP Answer:
Load Duration CurveLoad Duration Curve

yB,Pk

yA,Pk

yB,OP

LoadLoad

Hours/YrHours/Yr

22002200

15001500

1300 1300 

0 0 760 760 87608760
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Planning LP Answer:Planning LP Answer:
Model FormulationModel Formulation

MIN  760(70 yA,Pk+25 yB,Pk)+ 8000(70 yA,OP+25 yB,OP)

+ 70,000 xA+ 120,000 xB

subject to:

Meet load:    yA,Pk +  yB,Pk = 2200

yA,OP +  yB,OP = 1300

Generation ≤ capacity:

yA,Pk – xA ≤ 0; yA,OP – xA ≤ 0

yB,Pk – xB ≤ 0; yB,OP – xB ≤ 0 

Reserve: xA + xB ≥ 1.15*2200

Nonnegativity: yA,Pk , yA,OP , yB,Pk , yB,OP ≥ 0
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Planning LP Answer:Planning LP Answer:
Load Duration CurveLoad Duration Curve

yB,Pk

yA,Pk

yB,OP

LoadLoad

Hours/YrHours/Yr

22002200
25302530

1300 1300 

0 0 760 760 87608760

xA

xB

100100

Exercise in Transmission Modeling: AnswerExercise in Transmission Modeling: Answer

Optimal Dispatch
• Two plants: 

A: Meet load at A (400 MW) plus 
inject maximum amount that 
transmission limit allows (100 
MW/PTDF = 100/.33 = 300 MW)

= 700 MW

B: Serve the load at B not served by 
A (= 500 MW-300 MW)

= 200 MW

A

B
C

~
700 MW

400 MW

~
200 MW

500 MW
Marginal Costs (“LMP”) to Load:

A:  The cost of Plant A ($25)
B: The cost of Plant B ($70)
C: More complex!  To bring 1 MW to C, you can back off 1 

MW at B and expand 2 MW at A:
= -$70 + 2*$25 = -$20

100
MW 

200
MW 

100
MW 
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Commodity Markets ExerciseCommodity Markets Exercise
(Rectangles are Optimizing Market Parties; (Rectangles are Optimizing Market Parties; 

Ovals are Markets with Clearing Conditions)Ovals are Markets with Clearing Conditions)

Calif. PowerCalif. Power
Market,Market,
PeakPeak

Calif. PowerCalif. Power
Market, Market, 
OffPeakOffPeak

GenCo1

Gas Producers

TexasTexas
Gas MarketGas Market

EPA Supply

Market Simulation Model:Market Simulation Model: Max Value to Power & Other Gas Consumers Max Value to Power & Other Gas Consumers 
minusminus Costs of power, gas production & transportCosts of power, gas production & transport

s.t.s.t. market clearing, production functions for power & gas, capacitymarket clearing, production functions for power & gas, capacity limitslimits

Pumped
Hydro

Peak Power
Consumers

Offpeak
Power

Consumers

GenCo2

CaliforniaCalifornia
Gas MarketGas Market

Pipeline

NONOxx

AllowancesAllowances
AuctionAuction

Other Gas
Consumers




