Market Equilibrium & Gaming Models
for Electricity Policy Analysis & Policy Design

Corso di Eccellenza
Politecnico di Torino
19-20 July 2010

Benjamin F. Hobbs

Questions Addressed by
Strategic Market Models

What might be the effect of policies concerning...
» Generation structure (mergers, ownership, distributed resources,
entry...)
e Transmission investment (new lines ...)
* Market rules
— Transmission pricing (taxes, congestion, counterflows, zonal ...)
— Access (retail load, generators, arbitragers ...)
— Environmental markets (green certs., CO2 trading ...)
...upon...
* Economic efficiency (allocative & productive efficiency)
e Income distribution (TSO revenues, profits, consumer surplus)
* Emissions
...considering generator strategic behavior?
» Bidding
» Capacity withdrawal
* Manipulation of transmission (deliberate congestion, decongestion)
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l. “Process” or “Bottom-Up” Analysis:
Company & Market Models

What are bottom-up/engineering-economic
models? And how can they be used for policy
analysis?

A

= Explicit representation & optimization of
individual elements and processes based on
physical relationships

Process Optimization Models

Elements:

* Decision variables. E.g.,
— Design: MW of new combustion turbine capacity
— Operation: MWh generation from existing coal units
» Objective(s). E.g.,
— Maximize profit or minimize total cost
« Constraints. E.g.,
— X Generation = Demand
— Respect generation & transmission capacity limits
— Comply with environmental regulations
— Invest in sufficient capacity to maintain reliability

Traditional uses:

« Evaluate investments under alternative scenarios (e.g., demand, fuel
prices) (3-40 yrs)

* Operations Planning (8 hrs - 5yrs)
* Real time operations (<1 second - 1 hr)




Bottom-Up/Process Models
vs. Top-Down Models

m Bottom-up models simulate investment & operating

decisions by an individual firm..

* E.g., capacity expansion, production costing
models

e Individual firm models can be assembled into
market models

m Top-down models start with an aggregate market
representation (e.g., supply curve for power, rather
than outputs of individual plants).

« Often consider interactions of multiple markets
* E.g., National energy models

Functions of Process Model: Firm Level
Decisions

Real time operations:

* Automatic protection (<1 second): auto. generator control
(AGC) methods to protect equipment, prevent service
interruptions. (Responsibility of: Independent System
Operator ISO)

» Dispatch (1-10 minutes): optimization programs (convex) min.
fuel cost, s.t. voltage, frequency constraints (ISO or
generating companies GENCOSs)

Operations Planning:

* Unit commitment (8-168 hours). Integer NLPs choose which
generators to be on line to min. cost, s.t. “operating reserve”
constraints (ISO or GENCOs)

* Maintenance & production scheduling (1-5 yrs): schedule fuel
deliveries & storage and maintenance outages (GENCOSs)




Firm Decisions Made Using Process Models,
Continued

Investment Planning

 Demand-side planning (3-15 yrs): implement programs to
modify loads to lower energy costs (consumer, energy
services cos. ESCOs, distribution cos. DISCOs)

e Transmission & distribution planning (5-15 yrs): add circuits
to maintain reliability and minimize costs/ environmental
effects (Regional Transmission Organization RTO)

* Resource planning (10 - 40 yrs): define most profitable mix of
supply sources and D-S programs using LP, DP, and risk
analysis methods for projected prices, demands, fuel prices
(GENCOs)

Pricing Decisions

* Bidding (1 day - 5 yrs): optimize offers to provide power,

subject to fuel and power price risks (suppliers)

* Market clearing price determination (0.5- 168 hours): maximize
social surplus/match offers (Power Exchange PX, marketers)

Emerging Uses of Process Models

= Profit maximization rather than cost minimization
guides firm’s decisions

Market simulation:
e Use model of firm’s decisions to simulate market.

Paul Samuelson:
MAX {consumer + producer surplus}
& Marginal Cost Supply = Marg. Benefit Consumption
& Competitive market outcome

Other formulations for imperfect markets

* Price forecasts

« Effects of environmental policies on market
outcomes (costs, prices, emissions & impacts,
income distribution)

o Effects of market design & structure upon market
outcomes 10




Advantages of Process Models for Palicy Analysis &
Market Design

Explicitness:

 Model changes in technology, policies by altering:
— decision variables
— objective function coefficients
— constraints

e assumptions can be laid bare
Descriptive uses:
» Texture! Detailed impacts of policy
» Costs, emission, technology choices, market
prices, consumer welfare
Normative:
 identify better solutions through use of optimizatio
» show tradeoffs among policy objectives
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LA Operations Model:
1. System Dispatch “Linear Program”

m Basic model
* Cost minimization, pure thermal system, deterministic

In words:

* Choose level of operation of each generator (decision variable),
» ...to minimize total system cost (objective)

» ...subject to load, capacity limit (constraints)

Decision variable:
Y; = megawatt [MW] output of generating uniti (i=1,..,I) during
period t (t=1,..,T)
Coefficients:
CY, = variable operating cost [$/MWh] for y;,
X; = MW capacity of generating unit i.
LOAD, = MW demand to be met in period t

H, = length of period t [hours/yr]. (Note: in pure thermal system,
periods do not need to be sequential)
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Operations LP

MIN Variable Cost = Z;; H, CY;; y;;
subject to constraints:

Meet load:

% Vi =LOAD, vt
Generation no more than capacity:
Yie <X Vit

Nonnegativity:
Yie =20 Vit

This is a “Linear Program” (i.e., objective,

constraints are linear in decision variables) 1

Operations LP Exercise

Two generation types
A: Peak: 800 MW, MC = $70/MWh
B: Baseload: 1500 MW, MC = $25/MWh
Load
Pk: Peak: 2200 MW, 760 hours/yr
OP: Offpeak: 1300 MW, 8000 hours/yr
Assignment:
- Write down LP
- What is best solution (by inspection?)
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EXCEL Solver Model for Cost Minimization

A | 8 | ¢ | b | E | F |c|HEN 1 | J |
Operations Linear Program
Decision Variables —
—
Name o 4,pPr q B,Pr 4 q0p q gopr
Value ¢ 700 1500 0 1300
Capacity Q;yax 800 1500 800 1500
CM;; $/MWh 70 25 70 25
Hours/yr 760 760 28000 8000 Objective "Variable Cost”
Obj f() term 37240000 28500000 0 260000000 325740000
Constraints
Constraint Coefficients (Left Side)
Load Peak 1 1
Load Offpeak 1 1
Constraint Coefficients times Value Left Hand Side Right Hand Side Dual $/yr $/MWh
Load Peak 700 1500 0 0 2200( = 2200 53200 70
Load Offpeak 0 0 0 1300 1300| = 1300| 200000 25
Solver Parameters .
1 set Target cell: Solve I B
| Egqual To: O Max @ Mo  value of: |U Close I B
By Changing Cells:
[fega sEF4 2| Guess
ubject to the Constraints: Options |
FBE4$EF4 <= $BES SESS ;I Add
FFE15:EFF16 = $HELS FHELE
_ G| |
Reset all
Delate
_I Help |
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Operating Model Formulation, Continued:
Complications

Other objectives

= Max Profit? Min Emissions?

Energy storage

» Pumped storage, batteries, hydropower

Explicitly stochastic

= Usual assumption: forced outages are random and
independent

Transmission constraints

Commitment variables
= E.g., start-up costs

Cogeneration

16




II.LA.2. Unit Commitment:
A Mixed Integer Program

m Disregard forced outages & fuels; assume:
e u;=1if unitiis committed int (0 o.w.)

* CU, = fixed running cost of i if committed

MR, = “must run” (minimum MW) if committed
Periods t =1,..,T are consecutive, and H=1

RR,; = Max allowed hourly change in output

= MIN % CY i + % CUj
s.t. %y =LOAD, vt
MR;u; <Y; < X u, Vit
-RR; < (Yie - Vied) SRRy Vit
vy >0 Vit u,e{01} Vit
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II.LA.3. Using Operating Models to Assess NO,
Regulation

(Leppitsch & Hobbs, IEEE Trans. Power Systems, 1996)

NO,: an ozone precursor
N,+ O, +heat = NO,
NO, + VOC + —> O,

m Power plants emit ~1/3 of anthropogenic NO,
in USA

= Policy question: How effectively can NO, limits
be met by changed operations (“*emissions
dispatch”)?

18




Framework

We want less cost and less NO,
Cost

@ .nefficient

AE/ffICIent @ -Alternative
- dispatch order

NO,
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How To Generate Alternatives

Solve the following model for alternative levels
f the regulatory constraint:

MIN X CY,;vy,
t.1. MR <y, <X (note nonzero LB)

2. % Y;>LOAD (Mw)

3. Z E y; < MASS CAP (tons)

Note: MR, X, LOAD vary (used a stochastic programming method:
probabilistic production costing with side constraints)

m Data: 11,400 MW peak and 12,050 MW of capacity,
mostly gas and some coal. Most of capacity has
same fuel cost/MBTU. Plant emission rates vary by
order of magnitude (0.06 - 0.50 Ib/MBTU)
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Cost-Emissions Tradeoffs

m The cost of reducing emissions by 20% is
$70M (a 5% increase in fuel cost).

1250
1240 +
1230 +
1220 +
1210 +
1200 +
1190 +
1180 +
1170 +
1160

7500 8000 8500 9000 9500 1E+0 1E+O
0 0 0 (0] 0 5 5

Tons NOx / year

—e— Cost ($M), Ton Cap

Cost ($Myear)
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II.B.1. Deterministic Investment Analysis:
LP Snap Shot Analysis

Let generation capacity x; [MW] now be a variable, with
(annualized) cost = CX; [$/MW/yr]

MIN zi’t Ht CYlt y|t+ zI CXI X|

s.t. 2 v;; =LOAD, vt
Z Vit - X <0 Vit
% X; > LOAD, (1+M) (“reserve margin” constraint)
Yie =20 Vit
X;>0 Vi
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Some Complications

Dynamics (timing of investment)

Plants available only in certain sizes
Retrofit of pollution control equipment
Construction of transmission lines
“Demand-side management” investments
Uncertain future (demands, fuel prices)
Other objectives (profit)
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Planning LP Exercise

= Two generation types

A: Peak: 800 MW, MC = $70/MWh
= Operating Cost = $70/MWh
= Capital Cost = $70,000 / MW/yr

B: Baseload:
= Operating Cost = $25/MWh
= Capital Cost = $120,000 / MW/yr

- Load
= Peak: 2200 MW, 760 hours/yr
= Offpeak: 1300 MW, 8000 hours/yr
= Reserve Margin: 15%
= Assignment:
= Write down LP
= What is best solution (by inspection?)
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Example Capacity Expansion Analysis:
Costs of Maryland Joining the Regional
Greenhouse Gas Initiative

RGGI: CO, trading program for generators in

Northeastern US states

Maryland Healthy Air Act (2006): Requires a

study of the reliability and cost impacts of

Maryland joining RGGI

Also: what are the emissions effects? What is

the effect of CO, “leakage”? How is this

affected by market power?

= Tools:

= Haiku (Resources for the Future competitive market
model—includes capacity expansion)

= JHU market power model
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Maryland Joining the Regional Greenhouse Gas
Initiative: Findings
Report, University of Maryland, January 2006 (www.cier.umd.edu)

Emissions modestly lower
= -10% for Maryland; -4% for RGGI
- Some offset by leakage

Electricity demand decreases due to DSM programs,
consumers save money

= Generator profits drop, but few plant closures
Maryland Generation Mix in 2015
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II.C Including Transmission:
or Why Power Transport is Not Like Hauling
Apples in a Cart

= Review of “Laws”
= Weird implications
m Calculating “Load Flow”
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Review of DC Circuit Laws

B Ohm’s Law:
« Voltage difference proportional t0’ current * resistance

B Kirchhoff’'s Current Law:
* No net current inflow to a node (A Y— (D)

« T 1,y =0 J
Aj e G

J
B Kirchhoff's Voltage Law:
e Sum of voltage differences around any loop =0 &
* (Va-Vg) +(Vg- V) +(Vc-V,u) =0 —
e Sub in Ohm’s Law: 1,5*Rag + Igc*Rge + 1ca*Rca =0
B Losses:

— 2
* Lag = lag“ Rag

* Doubling the current implies four times the losses -




Implications of Laws

B Use laws to calculate flows

 If you know power generation and consumption at every
“bus” except the “swing bus”, then ...

 The “load flow” (currents in each line, voltages at each bus)
are uniquely determined by Kirchhoff’'s two laws!

* This is the “load flow” problem

B Some odd byproducts of laws: —
« Can’t “route” flow @

Parallel flows —

Transmission paths (e.g., choosing which German-Dutch interface to
buy) are a fiction

What you do affects everyone else

Adding a line can worsen transmission capacity of system
29

AC Load Flow is More Complex

o /N /T
/

m VVoltage at each bus is sinusoidal (with RMS
amplitude and phase angle), as are line currents

m “Reactive” (vs. “real” power) a result of “reactance”
(capacitance and inductance)

m This is the power stored and released in magnetic
fields of capacitors and inductors as the current
changes direction

m Although reactive power doesn’t do useful work, it
causes resistance losses & uses up capacity
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“DC” Linearization of AC load flow

BAssumptions
* Assume reactance >> resistance
» Voltage amplitude same at all buses
» Changes in voltage angles 0,-0; from one end of aline to
another is small
BResults:

» Power flow t,g proportional to:
—current g
— difference in voltage angle 0,-0;
* Analogies to Kirchhoff’'s Laws:
— Current law at A: % Yin = Z [sighboring m tam + LOAD,
— Voltage law: t,5*Rag + tgc*Rge + tca*Rca =0
* Given power injections at each bus, flows are unique

31

Example of “DC” Load Flow

All lines have

_ 100 MW 300 MW
reactance =1 @
\
(A)
s/ NG oo/
33 MW l
100 MW

Kirchhoff’s Current Law at C:
+33+67-100=0 Proportionality!
Kirchhoff's Voltage Law:
1*33 + 1*33 + 1*(-67) =0

32




Proportionality means “Power Transmission Distribution Factors” can be used
to calculate flows

All lines have
reactance =1

300 MW

=the MW flowing from j to k, if 1 MW is injected at m and 1 MW is
removed at n

PTDF

mn,jk

E.g., PTDFc 45 = 0.33

33

Principle of Superposition

34




Using PTDFs to Calculate Total Flow

100 MW

0! 100 MW
N o ) N
67 MW 17 MW 83 MW
33 MV/ I 17 MW/ \ — 7 ny \
I
(B) (C) / o (B) ()
33 MW l =~ 33 MW _L ) 67 MW ‘
= >0 MW = 50 MW/ =
100 MW 50 MW 150 MW

Total flow from B to C = PTDF, 3-*100 + PTDFg. 5-*50
=0.33*100 + 0.67*50 =67 MW

Exercise in Transmission Modeling
BAssumptions

- Triangle network, equal reactances 25@3“"""“
— Line from A to C: 100 MW limit ~
* Two plants:
A: MC = 25 $/MWh

B: MC =70 $/MWh 400 MW
e Load: 7%“"%
A: 400 MW \A — c
B: 500 MW N
’ _L 100 MW Limit
500 MW

m\What's the optimal dispatch?

m\What’'s the marginal cost of meeting an increase of 1
MW of load at A; at B; at C?




Linearized Transmission Constraints
in Operations LP

Yimt = MW from plant i, at node m, during t
z+ = Net MW injection at node m, during t

MIN Variable Cost =X, Z;; H; CY,, Vi

subject to:
Net Injection: Z Vi« - LOAD,, = 7 vt,m
Injection Balance: Z£_2z.,=0 vt
GenCap: Vi <Xip- Vi,m,t
Transmission: T, <[Z,PTDF 2 < Tr. VKkit
Yimt = 0 Yi,m,t
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Linearized Transmission Constraints
in Operations LP: Exercise Example

MIN Variable Cost = 25y, +70yg

subject to:
Net Injection: yo -400=12,
yg -500=1z4
Injection Balance: Zpt+t25=0

Transmission: -100< [0.33z, +0.0z5] <+100

Nonnegativity:
Note: In calculating PTDFs, | assume that all injections “sink” at

node B
* E.g. injection z, at A is assumed to be accompanied by an equal
withdrawal -z, at B
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lll. Mathematical Programming Models of Perfectly
Competitive Energy Markets

A. An Equivalency Result

= Definition of pure competition market equilibrium:

= Each player maximizes their profit, subject to fixed prices (no
market power)

= Market clears (supply = demand)

Assemble:
= “First order” optimization conditions for players
= Market clearing

This yields set of simultaneous equations that can be solved for
a market equilibrium

= Same set of equations are first order conditions for a
single optimization model (MAX net social welfare)
= MAX (Area under demand curves)-(Cost)
= Results in intersection of demand + supply curves

= Widely used in energy policy analysis
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Applications of the Pure Competition
Equivalency Principle

MARKAL: Used by Intl. Energy Agency countries for analyzing
national energy policy, especially CO, policies
US Project Independence Evaluation System (PIES) & successors

(W. Hogan, "Energy Policy Models for Project Independence,” Computers and Operations Research, 2, 251-
271, 1975; F. Murphy and S. Shaw, "The Evolution of Energy Modeling at the Federal Energy Administration
and the Energy Information Administration," Interfaces, 25, 173-193, 1995.)

US Natl. Energy Modeling System (C. Andrews, ed., Requlating Regional Power
Systems, Quorum Press, 1995, Ch. 12, M.J. Hutzler, "Top-Down: The National Energy Modeling System".)

ICF Coal and Electric Utlllty Model (nttp:/mww.epa.govicapicapiffrest.htmi)
» Acid rain, Clear Skies, Clean Air Interstate Rule

» POEMS (http://www.retailenergy.com/articles/cecasum.htm)
» Economic & environmental benefits of US restructuring
» Some of these modified to model imperfect competition (price
regulation, market power)

40




B. Equilibrium Model Formulations
Meet the FOC'ers:
“First Order Conditions” for Optimization

Let an optimization problem be:
MAX F(X)
{x}
s.t.. G(X) <0
X 20
Assume F(X) smooth/concave, G(X) smooth/convex.

A solution {X,A} to the KKT (“Karush-Kuhn-Tucker”)
conditions below is optimal for the above problem, and

vice versa. “KKTs necessary & sufficient for optimality.”

X - A 6GI6X) = 0

>0; G(X)<0;
A %G(X) =0

X20;  OF/0X-A0G/IOX L0;
X@QF{
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“Perp” Notation for the FOC’ers:

Let an optimization problem be:
MAX F(X)
{x}
s.t.. G(X) <0
X 20

The KKT’s, written in “perp” notation, are:

X { 0<X L 8F/0X - A9G/8X <0

A { 0<A L G(X)<0

42




Notation: Each node i is a separate commaodity (type,
location, timing)

Consumer: Buys d

Transporter/Transformer:
Uses exports tg; from i to
provide imports t;. to j

lij

Supplier f: Uses inputs x; to
produce & sell s

43

Players’ Profit Maximization Problems

Consumer at i:

MAX" B(d) - pi" d @
{d3}

Transporter for nodes i,j:
/@\ MAX pJ lj -p teij _CTij(tEij’tlij)
{tEIJ tIu}

Supplier f at i: S.t. Grj(teptiy) <0 (6y)
MAX" p;"sg; - Cs(Xg) bty = 0
{siXat
St Genl(SiXa) <0 (uq)

Sii X = 0

a4




Players’ Profit Maximization Problems

--one for each constraint

Consumer FOCs/KKTs at i :
--one for each decision variable

N

Supplier FOCs/KKTs at i
--one for each decision variable
--one for each constraint

O,

P

Transporter FOCs/KKTs for
--one for each decision variable
--one for each constraint

WK

45

KKTs for All Players in Market Game
+ Market Clearing Condition

Consumer FOCs/KKTs , Vi:
--one for each decision variable
--one for each constraint

Market
Clearing, V' i:
Supplier FOCs/KKTs, Vi
--one for each decision variable 0" [y s
--one for each constraint e F i
+Zj el(i) tlji
_Zj c£(i) i
Transporter/Transformer KKTs, Vij —d.
--one for each decision variable o 0 S |
--one for each constraint
N conditions

& N unknowns!
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An Optimization Model for Simulating a
Commodity Market

MAX (Value of Consumption) - (Production, Transport Cost)
MAX 2, By(d) — 2 CoilXs) — Zij CTij(tEij’tIij)
{d S5 X teip G

s.t.  Production Functions for each firm:
Gg(si, ) < 0, Vi
GTi-(tEij, t”j) < 0, Vij
Market Clearing for each commodity:
Zf Si t+ Zje|(i) tlji - zjeE(i) tEij - di =0, Vi
...and the usual nonnegativity conditions

Its FOC conditions = market equilibrium conditions for
the purely competitive commodities market! So:
» asingle NLP can simulate a market

* apurely competitive market maximizes social surplus 47

An Optimization Model for
Simulating a Competitive Energy Market

MAX Social Surplus =Z, B(d) — Z;; H, CY; y;;
ubject to constraints:
eet load:

-3 Vi, +d, =0 Vvt
Generation no more than capacity:

Yie <X Vi,t
Nonnegativity:

Yie=> 0 Vit

This is a “Quadratic Program” (i.e., objective, constraints
are either linear or quadratic in decision variables)
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Competitive Model Example

m Perfect competition

p

10

e Company 1:
e Company 2:
* Demand:

~

CY,=2;X,=5

CY1:2, X1:5
CY2=3, X2:5
p=10-d=10-(y, +VY,)

Demand function

Equilibrium in perfect
competition

CY,=3; Xy =5 .

d=y, +y,

Competitive
supply function

49

Competitive Model Example

m Perfect competition

10

e Company 1:
« Company 2:
* Demand:

CY1:2, X1:5
CY2=3, X2:5
p=10-d=10-(y, +VY,)

Integral under demand
curve minus production

costs

d= y1=+ Ys

10
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Excel Solver Perfect Competition Model

Solver Parameters

1 sat Target Cell: EY ,W‘
R [E=
| = |4B$5:4D355 E3| GLEsS
j A B & Subject to the Constraints: options b
1 Market Simulation for Competitive Market §E§f5$5§5(;;fﬁ$c$6:$%6 A e |
A Decision Variables - ' |
{3 Demand | Operations Variables
4 Name d V4 Ve
5 Value of d.v. 7 5 2
1 6 Capacity X; n.a. 5 5
7 CY; $/MWh 2 3
8 Demand Price Intercept 10
9 Demand Slope -1 MAX 'Social Surplus’
10 Obj () term| 455 -10 6|
11
12 Other Constraints
13 Constraint Coefficients (Left Side) P=MC=
14 Load constraint| 1 -1 1] Dual Price
15 Constraint Coefficients times Value LHS "G(X)" RHS "B"  $/MWh
16 Load constraint| 7 -5 2| 0] = | 0] 3

General Procedure for
Building Equilibrium Models

] Not all equilibrium problems can be formulated as optimization

problems
. Complementarity models are more general
— Some but not all complementarity equilibrium problems have an
equivalent optimization problem
— But all convex optimization problems have an equivalent equilibrium
(KKT) problem
Five steps:
1. Formulate optimization submodel for each market party
2. Derive KKTs for each party’s submodel
3. Create a complementarity problem consisting of those conditions

for all parties plus market clearing

. Should be as many conditions (either perp or equality) as variables. As check,
associate one variable with each condition

. Types of complementarity problems include linear/nonlinear, nonmixed/mixed
(without or with equality conditions, each with a matching unrestricted variable)

4. Analyze resulting problem for existence, uniqueness, other
properties
5. Parameterize & solve
52




I1I.C. Commodity Modeling
Exercise

1. Draw a diagram representing the following market
structure:

Two electricity companies in California
> Usetwo commodities as inputs:
1. NO, emissions allowances
2. Natural gas
> Sell power in offpeak and peak electricity markets
Supply of NO, emission allowances auctioned by EPA
Natural gas produced by companies in Texas, and piped to
California
2. Write an optimization problem that gives an

equivalent solution

3. Homework: Write optimization problem for each party
& derive a complementarity problem (in very general
terms) that would represent a competitive equilibrium
= Assume all parties are ‘price takers’
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V. Strategic Market Modeling: Oligopoly
A. Concepts

m Oligopoly or imperfect competition is the
most representative market structure in real
electric power markets

* Small number of large generating firms.

m Imperfect market analysis and modelling is

more complex

» Each generator must bear in mind the interdependence
between its decisions and the decisions of all other agents

» This strategic interdependence varies with the time
horizon of the decisions to be made
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Market Power = Ability to manipulate prices persistently to one’s
advantage, independently of the actions of others

Generators: The ability to raise prices above
marginal cost by restricting output

Generators may be able to exercise market
power because of:
e economies of scale
* large existing firms
e transmission costs, constraints

 siting constraints, long lead time for genera—
construction

 dumb market designs

Types of Games

= Noncooperative Games (Symmetric): Each
player has same “strategic variable”

—Each player implicitly assumes that other players
won't react.

—“Nash Equilibrium™: no player believes it can do
better by a unilateral move
m Let (X, X;) = i's profit, a function of i’s
strategy X, and everyone else’s strategy X,
= Nash equilibrium {X;", X"} occurs if:
m(Xi* X %) 2 (XX %)
for all feasible X; and for all i
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Types of Games (Continued)

« Examples of Nash Games:

— Bertrand (Game in Prices). Implicit: You believe
that market prices won't be affected by your
actions, so by cutting prices, you gain sales at
expense of competitors.

e COMPETITIVE COMMODITY MODEL!

— Cournot (Game in Quantities): Implicit: You

believe that if you change your output, your
Bid competitors will maintain sales by cutting or
raising their prices

— Supply function (Game in Bid Schedule): Implicit:
You believe that competitors won't alter supply
functions they bid

57

Digression: History Quiz

What was the profession of John Nash’s
father?
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Types of Games (Continued)

* Noncooperative Game (Asymmetric/Leader-Follower): Leader
knows how followers will react.
— E.g.: strategic generators anticipate:
* how a passive ISO prices transmission
» competitive fringe of small generators, consumers
— “Stackelberg Equilibrium”
— Multiple leaders possible:

» Several large generators competiting a la Nash with each
other, but each anticipating reaction of ISO (transmission
pricing) and fringe generators (outputs)

e Cooperative Game (Exchangable Utility/Collusion): Max joint
& 8  profit

m — E.g., competitors match your changes in prices or output

59

Three General Generator-Transmission
Games

Slmultaneous Game: Each takes other’s decisions as fixed

Sales n
Gen 1| Sales 1; e®e Genn 27 5 Transhission ISO

................................................................ PriCe rireirnrenrnnat
Sequential Game: Big Gen 1
--Single Leader anticipates Salesi :
Follower’s reactions : I A /L ......... TIEQD;S..: .
. Sales price : :
--Follower takes leader’s deC|S|o:ns :
asfixed — HL SmallGenn | =2
. : Gen 1 See | Genn
Multiple Leader-Follower: o ;”'-
. P Siesl - Siesn
--Each leader anticipates 2 TransT: :T
fOIIOWer’S reactions E E ; llllllllllll ;,i.c-é. -:IIII: llllllllllllllllllll
--Each leader takes other’s ISG)
decisions as fixed : —_—




B. Computation Methods for Nash (Simultaneous)
Games
Simple Example

1. Payoff Matrix: Enumerate all combinations of player
strategies; look for stable equilibrium

2. lteration/Diagonalization/Alternate Play/Gauss-
Seidel: Simulate player reactions to each other until
no player wants to change

3. Direct Solution of Equilibrium Conditions: Collect
FOCs/KKTs for all players; add market clearing
conditions; solve resulting system of conditions
directly
— Usually involves complementarity conditions

4. Equivalent Optimization: May exist a single
optimization model that gives same solution
(“Hashimoto”) 61

Strategic Modeling Exercise

« Two Cournot generators (competing on
guantity)
— Sell output in ISO day ahead market
» Strategic variables is quantity bid

— “Locational marginal pricing” —“first price
auction” -- market clearing price

— Equivalent to bilateral contracting with efficient
arbitrage

e Solve example with 4 methods

* Variant: “Pay as Bid”
— Strategic variable is price bid

— No single price; if cut price, you might sell more,
but at a lower price

— Also try to solve with payoff matrix
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Strategic Modeling Exercise:
Cournot/Quantity Model

m Each firm i's marginal cost=vy;,i =A,B (Total
cost = 0.5y?)
= Demand function: p =100 - d/2 [$/MWh]

MC, 100

P
1 1/2

Yi d

63

Strategic Modeling Exercise:
Cournot/Quantity Equilibrium

= Firm A: MAX 74(YaYs) = P(YatYs)Ya- CalYa)

= (100 - 0.5(ya*Yg))Ya - 0.5y,
s.t.y,>0

e KKTs: O0<y, LP+P¥%,-MC,<0
or O0<yn £(100-y,-0.5yg) -y, <0

= Firm B: MAX z5(ya,Ys)

= MAX (100 - 0.5(ys*Ys))Ys - 0.5yg?
s.t.yg>0
o KKTs: 0<yg L(100 -y,-0.5yg) -yg <0

m Market clearing: d =y, +VYg
= The market participant’s KKTs + market
clearing form a complementarity problem 64




Method 1:
Find cell such that ns is highest in column (Firm A maximizes its profit given 1) and ng is highest in row
(Firm B maximizes its profit given v4). In the below table, Bold italics represents Firm A's best response

to vy, while Bold represents Firm B's best response to ;. The format of the table is:
M4 | VRl B's v
.
A'S v 7T,
g
val Ve 30 32 34 36 38 40 42 44 46 43 50

30 [1650 1620 [1590 [1560 [1530 [ 500 1470 1440 1410 [1280 [1350
1680 1696 1734 1764 1786 1800 1806 1804 1794 1776 1750

32 [1696 1654 [e32 1500 1568 [1536 1504 1472 1440 [1408 [1376
1620 1664 1700 1728 1748 1780 1764 1760 1748 1728 1700

34 1734 1700 [1666 632 1558 [1 564 1530 1456 1462 1428 [1394
1590 1632 1655 1692 1710 1720 1722 1716 1702 1680 1650

36 1754 1728 1692 1656 1520 [1584 1548 1512 1476 [1440 [1404
1560 1600 1632 16586 1672 1680 1680 1672 1656 1632 1600

38 1786 17458 1710 G672 1534 [1596 1558 [1520 1482 {1444 1406
1530 1668 1598 1620 1634 1640 1638 1628 1610 1584 1550

40 [1800 1780 720 1680 [1640 11600 1560 [1520 1480 [1440 [1400
1500 1536 1564 1584 1596 1600 1596 1584 1664 1536 1500

42 [1806 1764 [1722 1680 1638 [1 586 1554 1512 1470 [1428 [1386
1470 1604 1530 1548 1558 1560 1554 1540 1518 1488 1450

44 [1804 1780 [H716 G672 1628 [1 584 1540 1456 1452 [1408 [1364
1440 1472 1496 1512 1520 1520 1512 1456 1472 1440 1400

46 (1794 1748 702 [1656 15610 [1 564 1518 1472 1426 [1380 [1334
1410 1440 1452 1476 1482 1480 1470 1452 1428 1392 1350

48 [1776 1728 [E80 1632 1584 [1536 1488 1440 1392 [1244 [1296
1380 1408 1428 1440 1444 1440 1428 1408 1380 1344 1300

50 [1750 1700 650 1600 1550 [1500 1450 1400 1350 [1300 [1250
1350 1376 1394 1404 1406 1400 1386 1364 1334 1296 1250
- 0O

Method 2: Diagonalization/Iteration Method

m Optimal reaction of Firm A to yg is found by maximizing
7 (YaYg) W.r.t.y, . The resulting KKT condition that
defines the optimal response vy, is:

0 <yn Ldzmy(Yaye)/dy, <0, or:
0<ya £(100 - y,-0.5y5) -yo <0

= If the optimal y, >0, then y, =50 - yg/4 is the optimal
reaction. A similar development given B’s optimal
reaction to y, as yg = 50 - y./4.

m Tennis an yon e? Iteration # YA yB
0 70 = ifpitial point
1 32.5
2 41.875
3 39.531
4 40.117
5 39.971
6 40.007
7 39.998
8 40.0005 66




Method 3: Mixed Linear Complementarity
Problem Statement

= Mixed LCP statement: Find {y,, Yg, d} such that
the following conditions are satisfied:

e Firm A: 0<y, £(100 -y,-0.5yg) -y, <0

e Firm B: 0<yg £(100 - 0.5y,-yg) -Yg <O

» Market clearing: d =y, +Vg

Mixed LCP: Has equalities as well as
complementarity conditions

Well-formulated problem will have equal
number of variables and conditions

m Could use PATH to solve this problem

* Lemke’s algorithm

 Iteratively linearizes for NCP

» Solution: y, =yg =40 MW; d = 80 MW, P(y,+yg) = 60
$/MWh 67

Method 4: Single Equivalent Optimization
Problem (Hashimoto 1985)

ConsidegI the following MP:
MAX [ (100-0/20 - (1,24 + Ys¥4) - Col1)-Col)

0
st.d-y,-Yg=0; yaYg>0

First term: integral of demand curve. If the underlined
term was omitted, this would be the standard welfare
max (perfect competition) model.

* Underlined term modifies customer value term (integral) so that

the derivative of {integral + underscored term} w.r.t. y; is the
marginal revenue (MR) for a Cournot firm f rather than price.

KKT conditions =equilibrium conditions (Method 3)
But it is not always possible to define a single
optimization problem whose KKTs match the
equilibrium conditions of a hypothetical market
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Method 4: Excel Solver Cournot Model

Solver Parameters |?|&|

Set Target Cell: ,W‘
S e e won B _om |
[$255:$035 E| Guess
A | B C D Subject to the Constraints: Options

1 Nash-Cournot Market Simulation: Quadratic Program igﬁ;%i%;;m%:mm -] Acld

2 Decision Variables e —

3 Demand | Operations Variables Note: Actual

4 Name d Vi ¥V Social Surplus=

5 Value of d.v. 80 40 40 4800

6 Capacity X n.a. | 99999 99999

7 Ci(y;) $/MWh =0.5%(y,)" =0.5*(y5)’

8 Demand Price Intercept 100 MAX ' Modified

9 Demand Slope -0.5 Social Surplus’

10 Obj f() term| 6400 -800 -800| -800] | 4000

Demand Hashimoto
curve term

11 integral

12 Other Constraints

13 Constraint Coefficients (Left Side) Price =

14 Load Constraint| 1 -1 -1 | Dual Price

15 | Constraint Coefficients times Value LHS "G(X)" RHS "B" $/MWh

16 | Load constraint] 80 -40 -40| 0.00] = | ol 60 69

Example of Nonexistence of Pure Strategy
Equilibria

m Definitions:

» Pure strategy equilibrium: A firm i chooses X* with
probability 1

 Mixed strateqy: Let the strategy space be
discretized {X;,, h =1,..,H}. In a mixed strategy, a
firm i chooses X,, with probability P;, <1. The
strategy can be designated as the vector P,

— Can also define mixed strategies using continuous
strategy space and probability densities

— Let B¢ ={P;, V] A}
» Mixed strategy equilibrium: {P,*, ¥} is mixed
strategy Nash Equilibrium iff: -
z(B*,B) > m(B,B ), Vi, VB % Py, =1, P;,>0
= By Nash’s theorem, a mixed strategy equilibrium
always exists (perhaps in degenerate pure strategy
form) if strategy space finite. 70




Another Example But with a Difference: Pay as Bid Case:

"Fay as Bid" Example .
Payoff Matrix method .

Each firm | has 100 MWV of capacity and zero MC, and submits a bid BID; to supply it to the market.
Find cell such that n, is highest in column (Firm A bids to maximize its profit given BlDg) and ng is

highest in row (Firm B maximizes its profit given BID )

BIDs\ BIDg: J2's Bid Bold italics represents Firm A's best bid response to BlDg
1's Bid Ty Bold represents Firm B's best bid response to BIDg
Lt ]
Mote that there is no single cell that is the best response by both firms!
BIDa A\ BIDg 11.25 12.5 13.75 15 16.25 17.5 18.75 20l 2125 225 23.75 25
11.25 998 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125
998 938 997 1050 1097 1138 1172 1200 1222 1238 1247 1250
12.5 938 1094 1250, 1250, 1250 1250 1280 1250 1250, 1250, 1250 1250
1125 1094 997 1050 1097 1138 1172 1200 1222 1238 1247 1250
13.75 997 a97 1188 137 137 137 137 137 1375 1375 137 137
1125 1250 1188 1050 1087 1138 1172 1200 1222 1238 1247 1250
15 105 105 105 127 150 150 1501 150 150 150 150 150
1125 1250 1375 1275 1087 1138 1172 1200 1222 1238 1247 1250
16.25 1087, 1097 1097 1097, 1361 1625, 1625 162 1625 1625, 1625 16825
1125 1250 1375 1500 1361 1138 1172 1200 1222 1238 1247 1250
17.5 113 1138 1138 1138 1138 144 1750 1750 1750 1750, 1750 1750
1125 1250 1375 1500 1625 1444 1172 1200 1222 1238 1247 1250
18.75 117 117 117 117 117 117 1523 1875 1875 1875, 1875 1875
1125 1250 1375 1500 1625 1750 1523 1200 1222 1238 1247 1250
20 120 120 120 120 120 120 1201 160 200 200 200 200
1125 1250 1375 1500 1625 1750 1875 1500 1222 1238 1247 1250
21.25 122 122 122 122 122 122 122, 122 167 212 212 212
1125 1250 1375 1500 1625 1750 1875 2000 1673 1238 1247 1250
22.5 123 123 123 WWQS 123 123 123 174 WW
1125 1250 1375 1500 1625 1750 1875 2000 2125 1744 1247 1250
23.75 1247 1247 1247 1247, 1247, 1247 1247 1247 1247 1247 1811 2375
1125 1250 1375 1500 1625 1750 1875 2000 2125 2250 1811 1250
25 1250 1250 1250, 1250, 1250 1250 1280 1250 1250 1250, 1250 1875
1125 1250 1375 1500 1625 1750 1875 2000 2125 2250 2375 1875

C. A Cournot Transmission-Constrained Model

m Features:

Bilateral market (generators sell to customers, buy
transmission services from ISO)
Cournot in power sales
Generators assume transmission fees fixed;
linearized DC load flow formulation
If there are arbitragers, then same as POOLCO
Cournot model

— In which generators sell to “single buyer”
Mixed LCP formulation: allows for solution of very
large problems
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Adding Transmission (and other commodities!)

Transmission
Constraint

0..
‘e
“a
----------------
-------------------------------------------------------------------

Simple Example of Model:
Generation Duopoly with Arbitrage and Transmission
Constraint

Wio =
Ca(Sart San) Price Transmission
from 1to 2




Perfect Competition Model

Wi,

Everyone a price taker w.r.t. nodal energy prices P,, P,, and transmission price

Equilibrium problem: Find {p,, p,, w

simultaneously soly

-
- -

127 Sar Sazr S1 S 8121 Y1) that
eih&followmg problems:

l ——————————
Gen A: Given {p,, py, Wy ,}:
MAX  PySas + P2Saz = Wy 2Sa2 - Ca(SartSa2)

{sAl’ SAZ > O}

{Sg1, S, > 0}

Gen B: Given {py, p,, Wy ,}: )
MAX " P;Sg; + PoSgp +Wy 5 Sg; - |

Cp(Sp1+Sp))

o ———— =

-

-

———— -

Consumer 1: Given {p,}:
MAX [,"+P,(x)dx - p,d,
{d, >0}

TSO: Given {w,,}:
MAX" W, Y1,

{yeo}
-50<y,, <+50

s.t.

{d,>0}

Consumer 2: Given {p,}:
MAX [,%2 P,(x)dx - p, d,

{a,.}

Arbitrager: Given {p,, p,, W, , }:
MAX" (py- Py -Wy5)ay,

e —— -

Market clearing: d;=-a;, + s, + Sg;

d,=+a;, + Sy, + Spy
Y12= Q15+ Spy - Spp

-~ .
~ o~ -——
-~ - ~ -
o~ - ~ - -
e

Perfect Competition Model

Derive KKTs for each player’s problem; combine with market clearing

conditions

Mixed LCP: Find {p;, p,, Wy, Sap: Spas Sgrs Seon 8100 Y10 Aro* A

solves the following mixed complementarity problem:

- ——
- — = = e
e e = = = = ~ -~ ——— v

/

A,,} that simultaneously

N

dy=+a,, + Sy, +Sp,
Y10= 815+ Sy - Sy

%en AJ_( c ) 0 Gen B: \|
SSp L (p-C) < 0<sg L(p,+w,,-Cg)<0 I
0<so L (pr-W..-C,) <0 = Spy (pl- 12 B) i
S Sp2 2" W12~ %n 0<sg,L(p,-Cg)<0 I
Consumer 1: Consumer 2: I’
-p. < ) !
OSdl J‘Pl(dl) pl_O OSdZJ_PZ(dz)'pZSO \\\
TSO: Wi, Ay, +hy ;=0 \
0<A,"Lly;,-50<0 Arbitrager: \
0<A,y L -y,,-50<0 Py Py Wy, =0
/
Market clearing: d,=-a,, + Sy + Sg; e

-———
~ - -
S~ - -
—_—— -

Under mild conditions, solution (1) exists, (2) is unique




Oligopolistic Generation

Naive assumption that Generators are Bertrand (price takers) with respect to
transmission costs W (e.g., Wei & Smeers, 2000)

Equilibrium Problem: Find {w,,, Sx;, Sap Sg1» Sgor 81 Y10} that

s.t. dy=-a;,+Sp + S

s.t. dy=-a;,+Sy * g
d, =+a,, +Sp, +5g,

d,=+a;, +Sp, +Sp,

simultaneously solve the followmg_p_rgtglems e m———

T e e == T T T T TS~ - T T T e e = - S~ -
1 N\
1| Gen A: Given {w, ,, Sg;, Sgy,a; 5 } Gen B: Given {W, 5, Sa;, Saz,81 5 } !
: MAX P1(d))sa; + Py(dy)ss, MAX P1(dy)sg; + Py(dy)sg, l’
'| {81 Sn2 2 0; dy, dy} = Wy 5 S, = Ca(Sa1+Sa0) {Sa0 85,2 0;dy, .} Wy 5 Spy - Cp(Spy+Spy)

\

\

\ . ]
p TS?AAS'Ven g,k Arbitrager: Given {p;, p,, W, }: |
! ) W12 Y12 MAX" (p,- Py -W; )2, , |
12
X st -50<y;, <+50 (8.2} L
.o Market clearing: y,,=a,, + Sy, - Sg; /”’
/

-~
—
-
- -———
-~ - - -~ -
- — -

Oligopolistic Generation Model

Derive KKTs for each player’s problem; combine with market clearing conditions.
After rearrangement, we get:

Mixed LCP: Find {p;, Py Wy 5, Sa1 Sazr Sg1s Sgor Q100 Y100 A% A2} that
S|multaneously solves the following mixed complementarity problem

-—
~ -~ —— = - -
-~ —-—— = - ~
— —— -~ -
— o —— -~ —_—

N

/

/

| \

1| Gen A: Gen B: :

1| 0S8, L (P -Py'sy -Co) <0 0<sg L (P -Pysg+w,,-Cg)<0 !

1 05 L (Py-Py'ssy -Wyp-Ca) <0 0<sg L (P,-P,sg,-Cg) <0 |

1 I

!

| TSOD Wyp Ay ™Ay, =0 Arbitrager: Y

X 0<h,"Ly;,-50<0 P,-P,-w,,=0 !
| | 0<h, L y,,-50<0 ' |
1 )
| Market clearing: d, = -a,, +s,, + S, /!
\ o d,=+a,, + 55, + Sg, e 7
~_--"" s Yi2= 812 Sp2 - Sps d B

\ /
Under mild cond|t|ohs~so.lut_lqn_t_o,resulrmg MC-P—(-l).emSts (2) is unique,

and (3) is equivalent to POOLCO Cournot equilibrium




Simple Example of Model:
Generation Duopoly with Arbitrage
and Transmission Constraint

D. A Large Scale Cournot Bilateral & POOLCO Model

(B.F. Hobbs and U. Helman, "Complementarity-Based Equilibrium Modeling for Electric Power Markets," in D.W.
Bunn (ed.), Modeling Prices in Competitive Electricity Markets, J. Wiley, 2004)

Features:

» Bilateral market (generators sell to
customers, buy transmission services from
ISO)

e Cournot in power sales

» Generators assume transmission fees fixed,;
linearized DC load flow formulation

* Mixed “linear complementarity” formulation:
allows for solution of very large problems
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A Large Scale Implementation:
Eastern Interconnection Model

m 100 nodes representing control areas and 15
interconnections with ERCOT, WSSC, and
Canada
829 firms (of which 528 are NUGS)

2725 generating plants (in some cases
aggregated by prime mover/fuel type/costs);
approximately 600,000 MW capacity

= Implemented by FERC staff

» Spatial market power issues (congestion, addition
of transmission constraints)
’ [ Y » Effects of mergers
81

Eastern Interconnection Model

m 814 flowgates, each with PTDFs for each node
(most flowgates and PTDFs defined by NERC,;
a mix of physical and contingency flowgate
limits)

m 68 firms represented as Cournot players (with
capacity above 1000 MW). Remainder is
competitive fringe
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Selected Market Power Results

83

Merger Example
(Firm A at Node A, Firm B at Node B)

Competition
Cournot w/
arbitrage
Difference

Cournot Price
Node A

Cournot Price
Node B

Profits

pre-merger

$22.17
$22.85
3.07%

$18.89

$27.65

A+B=%$162,723

merger

$22.17
$22.86

3.11%
$18.92

$27.66

AB=$162,400
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E. Advanced Models

Desirable Improvements
(thanks to R. Baldick, 2006)

mimproved models of Physical system
*Better representation of technology constraints
*The economist’s “production function”

mimproved models of Commercial system
«Definition of products / markets
«“Settlement rules”: who gets paid what in each market

mimproved models of Economic system
*Agent objectives
*Agent strategic variables
*Agent state of knowledge / expectations
*Agent cooperation
85

Examples of Improved Models:
Generation

mBetter physical models
*Multiple periods and hydro gushnei 2002)
*Capacity additions
— Make capacity & energy decisions at same time (“open 00p”) (wei, smeers, 1999)
- Muﬁlﬁyesgge&azggz)y decisions anticipating effect on energy market (“closed loop”)

*Emissions permits markets (*)

mBetter commercial models
eLocational operating reserves markets (seman 2002; sautista et al. 2005)
*Two-settlement systems: day ahead (perhaps zonal pricing) and real-
time (locational) (EPEC!) (camat & oren, 2004)

mBetter economic models
*Forward contracts:
— Exogenous contracts (reen 2002)
— Endogenous contracts: Two stage models (EPECS!) (vao, oren, Adler 2005)
* Anticipate supply response of rivals
— Include fringe’'s KKTs in leader’s constraint set (MPEC!)nNeuhoft et al.)
— “Conjectured supply response” (pay/Hobbs 2002)
— Inverse problem (estimate conjectural variations) (carcia-Alcalde et al. 2002)
*Tacit collusion (multiperiod “supergames”) (iu, Harrington, Hobbs, Pang, 2005)
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Examples of Improved Models:
Transmission

m Better physical models:
eLinearized DC Load flow model (*)
— TSO constraints involve PTDFs
— Quadratic losses
*AC Load flow model (Anjos, Bautista et al. 2006)
-%g)ntrollable DC lines, phase shifters in linearized DC load flow (Hobbs et al.

mBetter commercial models:
*Commercial rules results in (economically) imperfect transmission
pricing
— Path-based models (Hobbs, Rijkers et al. 2003)

— No-netting of flows (use nonnegative flow variables for each direction)
(Hobbs, Rijkers et al. 2003)

— Average cost-based tariffs weiand smeers, 2000)

m Better economic models:

*Generators anticipate transmission price changes

— Include TSO KKTs as constraints: MPEC! (eg. cardeliHitt/Hogan 1997; Hobbs/Metzler/Pang 2000;
Borenstein/Bushnell/Stoft 2000)

— Or “conjectured transmission price response” (MCP) (Hobbs/Rijkers 2003) 87

Example of a Stackelberg (Leader-Follower)
Model

m Large supplier as leader, ISO & other suppliers as
followers in POOLCO market

Problem: choose bids B; to max =,
MAX . =% [Py - Ci(yL)l
s.t. 0<y,;<X, Vi
KKTs for ISO (depend on B;’s)
KKTs for other suppliers (price takers)

The Challenge: the complementarity conditions in the
leader’s constraint set render the leader’s problem non-
convex (i.e., feasible region non-convex)

m Algorithms for math programs with equilibrium constraints
(MPECSs) and equilibrium programs with equilibrium

constraints (EPECs) are improving "




EPEC

Sophisticated assumption that Generators are Stackelberg leader with respect
to transmission costs W (e.g., Hobbs, Metzler, Pang, 2000)

Equilibrium Problem: Find {le, AL Saor Sg1s sBZ, 12 Y10} that

—_—— -
-——____.—‘

———
- -
-

| | Gen A: Given {Wy,, g1y Sgpsdy s ) Gen B: Given {s,;, Sy, }: \:
: MAX P.(d)sa; + P,(dy)s,, MAX P1(d;)sg; + Po(dy)sg, !
Il {Sa1: 842205 dy, do} “WyoSap - CA(SA1+SA2) +W1,z Sg1 - CB(S|31+532) I
VoSt d,=-a,,+ Sy + Sp; s.t. dy=-a;,+ Sy +Sg, X
] d,=+a;, +s,, +Sg, d, = +ay, +S,, +Sg; |
\

\ . + \

\l 7;)%2- 50 Tl 1 (xvl,g 'ﬁlbz )<0 TSO: 50>, , L (W, ,-A,,") <0 \'

| USVYi, ('Wl,z B 1,2) = -50 < Y12 1 (-lez '7‘1,2_) <0 I

' bitrager: p;-p,-w;,=0 : '

|\ Arbitrager: py- p, -Wy, = Arbitrager: p;-p,-w,;,=0 !

Ma?ket—c-iear—m.g Yi2= 812+ Sp - Spy Market clearing: y,,= all2 s ’531
N
Iteration/DiagonaI|zai|BﬁTGau§s §é|ael) amaﬁd MPECS often used
Generally: pure strategy solutions may neither exist nor be unique
Stackelberg
Analysis i Stackelberg Leader
L’s decisions X, : PNOX(x,)
Allowances bought Qyoy . Pi(x.)
Energy decisions y; ,,5;, Wilx)

Chen, Hobbs, Munson,
Leyffer, Computational

Management Science, 2006,
307-330




Stackelberg Leader’s Problem

The firm with a longest position in NOx market and greatest power sales is
designated as the leader

q" = Stackelberg’s NO, withholding variable [tons]
a:‘o’= Firm’s available NO, allowances [tons]

MAX WZi{[pi (Sy +Zg¢f Sig)_Wi Isiy —[Cic (i) —Wiyy]

SitFif
—NO, w
—p "B ~(@; " -9")}

s.t.: y,; <CAP, Vi

2.8k =2V

Sy Yy 20,Vi

X

w —NO
0<q" <q
0<p LY (EM -q;)+q" <0

*Other Producer & TSO KKT Conditions

*Market Clearing Conditions
91

ISO Optimization Problem
Quadratic Loss Functions

m |ISO’s decision variables:
Z,= transmission service from hub to i
Losses .
d; = make-up loss from node i
t, = flow in arc (i,j)

m |ISO’s maximizes the “value of services” :

MAX 7. (tij Z ,qiLosseS) _ Zi W.z, _piqiLosseS)
st.iz, —q o +2163(i)(tu ~(1-L;t)t;)<0, Vi Kirchhoff's Current Law
Yoo Rty —t) =0, vk,(i,j)ev(k) Kirchhoff's Voltage Law
>.2,=0 Services Balance

O<t, <T,;, Vi,j T, = capacity of line (i,j)
qiLosses > 0’ vl

e Solution allocates transmission to most valuable transactions
m Define the model’s KKTs (complementarity conditions), one per
variable x,5o 92




Model Statistics

m 18,618 variables: 9739 constraints

e Order of magnitude larger than test problems in R.
Fletcher and S. Leyffer, “Numerical Experience
with Solving MPECs as NLPs,” Univ. of Dundee,
2002

= Solved by PATH and SQP (SNOPT, FILTER)
(Thanks to Todd Munson & Sven Leyffer!)

= 9,536 seconds (1.8 MHz Pentium 4)
e Other MPECs took much less time

93

Stackelberg Results

Compared to the Cournot Case:

m Stackelberg leader:
» withholds 5,536 tons of allowances (7.2% of total available)
* ...increasing NO, price from 0 to 1,173 [$/ton]

= Output:

» other producers shrink their power sales (87.4—83.5 x106 MWh)
due to increased NO, price

e ... while the leader expands its output (24.6—228.7 x105 MWh)
= Profit:

» Stackelberg leader earns more profit (893 — 970 M$)

e ... at the expense of other producers (2394 — 2273 M$)
m Consumers:

» are only marginally better off with a gain of 14 [M$] in consumer
surplus, as power prices are essentially unchanged
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V. Conclusion

There are practical market models that capture key features of
the market:

= Kirchhoff’s current & voltage laws,

= transmission pricing,

= generator strategic behavior

Market features present computational & analytical challenges
for the power engineering/O.R. researcher

Prices can’t be predicted precisely because games are repeated,
and conjectural variations are fluid and more complex than can
be modeled. Models most useful for exploring issues/gaining
insight--thus, simpler models preferred

= MODELS ARE FOR INSIGHT, NOT NUMBERS!!!
Apply to market structure evaluation, market design, and
strategic pricing

Need comparisons of model results with each other, and with

actual experience
95

Operations LP Answer:
Model Formulation

MIN  760(70 Y px + 25 Yg pi)
+8000(70 Y 0p + 25 ¥Yg,0p)

subject to:
Meet load:

Yapk * Yepk =2200

Yaop * Yeop = 1300
Generation < capacity:

Yapk<800; yaop<800
Y pk< 19005 yg 0p <1500

Nonnegativity: Yapi, Yaor, Yark, Ye0p= 0
96




Operations LP Answer:
Load Duration Curve

Load
2200
Ya Pk
1500
1300 boooooeoees
YB Pk
’ YB.0op
° 760 Hours/Yr 8760
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Planning LP Answer:
Model Formulation

MIN 760(70 YA pt25 Yp pi)+ 8000(70 YA op+25 Yi op)
+ 70,000 X5+ 120,000 Xg
subject to:
Meet load: Yapk T Yepk =2200
Yaor * Yeop =1300

Generation <capacity:

Yapk—Xa=0; Yaop—Xa <0

Yepk— X8 <0; Ygop— X =0
Reserve: X+ Xg 21.15*2200
Nonnegativity: Yark Yaor, Yepk, Ysop20
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Planning LP Answer:
Load Duration Curve

Load
2530 prrnsssnn s nnnnnn
2200
XA

Yapk
1300

YB.Pk Ve op ‘.

0 760 Hours/Yr 5760
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Exercise in Transmission Modeling: Answer

B Optimal Dispatch

 Two plants:

A: Meet load at A (400 MW) plus
inject maximum amount that
transmission limit allows (100
MW/PTDF = 100/.33 = 300 MW)

=700 MW

B: Serve the load at B not served by
A (=500 MW-300 MW)

=200 MW

mMarginal Costs (“LMP”) to Load:
A: The cost of Plant A ($25)
B: The cost of Plant B ($70)

C. More complex! To bring 1 MW to C, you can back off 1
MW at B and expand 2 MW at A:

=-$70 + 2*$25 = -$20

500 MW
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Commodity Markets Exercise

(Rectangles are Optimizing Market Parties;
Ovals are Markets with Clearing Conditions)

Peak Power
Consumers

Calif. Power
Market,
Peak

Calif. Power

Offpeak Market,
Power 4| OffPeak
Consumers

Other Gas <
Consumers

<+« GenColy

4/-‘GenCOZ ¢

California
Gas Market

\Pipeline

Texas
Gas Market

Gas Producers

NO,
Allowances

Auction
AN

EPA Supply

Market Simulation Model: Max Value to Power & Other Gas Consumers
minus Costs of power, gas production & transport
s.t. market clearing, production functions for power & gas, capacity limits
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