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Abstract

Liquidity providers (LPs) on decentralized exchanges (DEXs) can protect them-
selves from adverse selection risk by updating their positions more frequently. How-
ever, repositioning is costly, because LPs have to pay gas fees for each update. We
analyze the causal relation between repositioning and liquidity concentration around
the market price, using the entry of blockchain scaling solutions, Arbitrum and Poly-
gon, as our instruments. Lower gas fees on scaling solutions allow LPs to update more
frequently than on Ethereum. Our results demonstrate that higher repositioning inten-
sity and precision lead to greater liquidity concentration, which benefits small trades
by reducing their slippage.
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1 Introduction

One of the major cryptoasset exchanges, FTX, filed for bankruptcy on November 11, 2022.

Crucially, FTX kept custody of its client deposits. Thus, whereas the exact reasons for its

collapse were the subject of investigation by the US Securities and Exchange Commission

(SEC), at least $1B of its customers’ funds have vanished, according to Reuters1. FTX was a

centralized exchange (CEX), with all trades taking place through a limit order book (LOB).

In any LOB-based market, a central institution, such as FTX, is needed to match trades and

keep records of all transactions.

A recent alternative to CEXs are so-called decentralized exchanges (DEXs) that operate

directly on the blockchain. In contrast to CEXs, users themselves keep custody of their

assets on DEXs. They execute their trades directly from their wallet, using smart contracts,

i.e. a set of pre-programmed rules.2 Therefore, executing directly on the blockchain provides

higher level of security for clients’ funds. Indeed, there is evidence of significant trading

volume shifting to DEXs in the week of FTX collapse. According to Reuters, “volumes at

the largest DEX, Uniswap, spiked to $17.2 billion in the week of Nov 6-13, from just over

$6 billion the week before”.3

This higher level of security on DEXs comes, however, at a cost. First, transactions

are overall slower, since they have to be validated by “miners” or “validators” before being

recorded on the blockchain. Second, users of the blockchain have to compensate validators

with the so-called “gas fees” for their efforts. Importantly, “gas fees” are paid not only by

liquidity demanders, but also by liquidity providers (LPs). Essentially, gas fees represent

1“Exclusive: At least $1 billion of client funds missing at failed crypto firm FTX”, Reuters, November
13, 2022. Available at https://www.reuters.com/markets/currencies/exclusive-least-1-billion-client-funds-
missing-failed-crypto-firm-ftx-sources-2022-11-12/

2Aspris et al. (2021) also argue that decentralized exchanges have higher security, because assets are
never transferred to the custody of a third party. Lehar and Parlour (2021) and Barbon and Ranaldo (2021)
provide a comprehensive overview of differences between CEXs and DEXs. However, allowing users to keep
custody of their own assets is the most important advantage of DEXs.

3“Cryptoverse: Let’s talk about DEX, baby”, Reuters, November 22, 2022. Available at
https://www.reuters.com/markets/currencies/cryptoverse-lets-talk-about-dex-baby-2022-11-22/
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a fixed cost and act as a “transaction tax” for every transaction added to the blockchain.

Liquidity demanders pay gas fees whenever they would like to execute a trade.4 Liquidity

providers pay gas fees whenever they deposit or withdraw liquidity from the exchange.

In this paper, we analyze the effects of repositioning intensity, i.e. frequency of posi-

tion updates by LPs, on liquidity concentration on the largest DEX, Uniswap v3. Much

alike traditional market makers, LPs are subject to adverse selection risk (Capponi & Jia,

2021; Foley et al., 2023; Lehar & Parlour, 2021). To protect themselves from being ad-

versely selected, LPs need to update their positions in response to changes in the market

price, similar to canceling and reposting limit orders in the LOB. With lower gas fees, it is

cheaper for LPs to update their liquidity positions. Consequently, they can reposition more

frequently, which results in better protection from adverse selection.5 With better protection

from adverse selection, LPs can earn higher fees (for the same amount of capital deposited)

by setting narrower price ranges around the market price, i.e. their positions become more

concentrated. Thus, we expect that a higher repositioning intensity by LPs leads to higher

concentration of aggregate liquidity around the market price.

In contrast, if gas fees are high, LPs should only update their positions if the market price

sufficiently deviates from their position’s price range, as repositioning is costly. Therefore,

we expect LPs to set wider price ranges when they are not able to update frequently, in

order to reduce adverse selection risk. Lower repositioning intensity should thus result in

lower concentration of aggregate liquidity in the pool. Overall, concentration of aggregate

pool liquidity around the market price is important, because higher liquidity concentration

translates into lower slippage and thus lower execution cost for traders.

Testing the empirical relation between repositioning intensity and liquidity concentration

might be problematic, because repositioning intensity is potentially endogenous. A choice of

4Gas fees are in addition to standard exchange fees that both CEXs and DEXs charge for trade execution.
Prior findings by Barbon and Ranaldo (2021) suggest that gas fees on the main blockchain for DEXs,
Ethereum, indeed represent a considerable portion of execution cost for traders on Uniswap v2.

5Lehar et al. (2022) discuss trading mechanics on Uniswap v3 in great detail and also argue that liquidity
updating should be more frequent with lower gas fees.
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an LP to update their position can in itself depend on the current liquidity concentration in

the pool. To identify the causal effect of repositioning intensity, we use the launch of Uniswap

v3 on two Ethereum scaling solutions, Arbitrum and Polygon, as our instruments. Blockchain

scaling solutions allow for a quicker validation of transactions, with an average block time

of 0.25-3 seconds, relative to Ethereum’s 12 seconds.6 Moreover, scaling solutions charge

significantly lower gas fees of only around $0.01 on Polygon and $0.20-$2 on Arbitrum per

trade on Uniswap v3, as compared to an average gas fee of $14 on Ethereum. Importantly,

lower gas fees on scaling solutions allow LPs to update their positions more frequently.

Therefore, we use the launch of Uniswap v3 on scaling solutions as our instrument for an

exogenous increase in repositioning intensity of LPs.

We test our predictions above using the two most liquid pairs on Uniswap v3, ETH/USDC

0.05% and ETH/USDC 0.3%, that are traded across all three chains: Ethereum, Arbitrum

and Polygon. Hence, our benchmark dataset consists of six distinct liquidity pools.7 Our

sample period starts in January 2022, after the launch of Uniswap v3 on both Arbitrum and

Polygon, and ends in June 2023.

We first examine trading volume, trade size and total value locked (TVL) in liquidity

pools across all chains.8 Overall, we observe significantly larger trades, volumes and TVL

on Ethereum, relative to scaling solutions. These results are largely due to higher security

of Ethereum, driven by its high number of validators. In contrast, LPs are more reluctant to

deposit large amounts of liquidity on less secure scaling solutions, resulting in a lower overall

TVL. Similar to a separating equilibrium, larger TVL on Ethereum attracts larger trades,

for which greater liquidity is more important than high gas fees. In contrast, blockchain

6There is a trade-off between quicker transaction validation and security of scaling solutions, which we
discuss in detail in Section 2.2. See also Chemaya and Liu (2022) for estimation of investors’ preferences for
blockchain security, using a structural model.

7The sample of pools that are traded across all three chains and are still sufficiently liquid is quite limited.
We also replicate our main results for four additional pairs, BTC/ETH 0.05%, BTC/ETH 0.3%, UNI/ETH
0.3% and LINK/ETH 0.3%, that are relatively actively traded across all three chains, thus mapping into
twelve additional pools. All our main results are robust and continue to hold for these four additional pairs.

8Total value locked (TVL) is equivalent to total market depth in the traditional LOB.

3



scaling solutions are more attractive for smaller liquidity providers and smaller traders, who

are primarily concerned about gas fees, and less so about security.

Importantly, despite their lower TVL, we observe higher aggregate liquidity concentration

around the market price on blockchain scaling solutions. Our benchmark measure of liquidity

concentration is market depth within 2% of the market price, divided by TVL (i.e. total

market depth).9 We hypothesize that this higher liquidity concentration is caused by higher

repositioning intensity of LPs on Arbitrum and Polygon. As discussed above, we use the

launch of Uniswap v3 on Arbitrum and Polygon as an instrument for an exogenous increase

in updating frequency of LPs. Our findings from instrumental variable regressions provide

strong supporting evidence for our predictions, suggesting that an increase in repositioning

intensity indeed leads to greater concentration of liquidity around the market price. A one-

standard deviation increase in repositioning intensity results in a 4.38% increase in liquidity

concentration. This value is economically significant, because it represents a 43% increase

from the average liquidity concentration of 10.16% on Ethereum.

One potential concern could be that, whereas liquidity providers increase intensity of

their repositioning, they do not necessarily reposition close to the new market price. Fur-

ther, although a position might be centered around the market price, it might still have

a wide price range. To address these issues, we also run instrumental variable regressions

for three measures of repositioning precision of LPs: the average gap between the midprice

of their positions and the market price; the average range length of their positions; and

the average position precision, which combines the previous two measures. Consistent with

our expectations, we find that an increase in repositioning precision also results in greater

concentration of liquidity around the market price.

An increase in aggregate liquidity concentration is important, because it reduces slippage,

for a given TVL. We define the slippage of a trade as the difference between its average

execution price and the pre-execution market price. Indeed, we find that small trades (up

9All our results hold if we use 1% or 10% as a cutoff instead of 2%.
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to $5K) have significantly lower slippage on scaling solutions, compared to Ethereum. In

contrast, large trades have lower slippage on Ethereum due to its larger TVL.

In the last part of our analysis, we address a potential concern that higher liquidity

concentration is not necessarily driven by higher repositioning intensity, but is rather an

equilibrium outcome of liquidity provision on scaling solutions. Specifically, we use an ex-

ogenous shock to repositioning intensity within Arbitrum chain, related to the airdrop of

Arbitrum’s native token ARB on March 23, 2023. Uniswap was entitled to 4.3M ARB to-

kens, which were used to incentivize LPs to stay active and re-position in the market price

range to maximize their rewards. Arguably, if a shock occurs within the same chain, all

chain’s parameters, such as chain security, expected trading size etc., should remain con-

stant. Thus, changes in liquidity concentration can indeed be attributed to an increase in

repositioning activity of LPs. Consistent with our expectations, we find that an increase

in repositioning intensity on Arbitrum after the airdrop has a more pronounced effect on

aggregate liquidity concentration, relative to the pre-airdrop sample.

Overall, our findings are important, because they show that blockchain scaling solutions

already represent a viable alternative to Ethereum for small traders and liquidity providers.

Specifically, their lower gas fees allow small liquidity providers to better manage their posi-

tions, protecting themselves from adverse selection. In turn, higher repositioning intensity

and precision of LPs leads to higher liquidity concentration, which especially benefits small

traders by reducing their slippage.

Our paper contributes to the emerging literature on decentralized exchanges. First stud-

ies on decentralized exchanges focus their analysis on a particular subclass of automated

market makers (AMMs), the constant product market makers (CPMMs), on the example of

Uniswap v2. CPMMs do not allow liquidity providers to set a price range for their positions

(Aoyagi, 2020; Aoyagi & Ito, 2021; Park, 2023). Hence, the only decision of a liquidity

provider on Uniswap v2 is whether to provide liquidity or not in a specific pool. Lehar and

Parlour (2021), Capponi and Jia (2021) and Foley et al. (2023) show that liquidity providers
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on AMMs are subject to adverse selection by competing arbitrageurs. In this setup, Lehar

and Parlour (2021) and Foley et al. (2023) show how pool size acts as an equilibrating force

in AMMs. Pools with higher adverse selection problem will experience more liquidity with-

drawals and therefore reduce to an optimal size, in which average earned fees compensate

liquidity providers in taking adverse selection risk. Lehar and Parlour (2021) do not explic-

itly analyze the role of gas fees, and treat them as an important pre-commitment by liquidity

providers not to withdraw liquidity from the AMM. Barbon and Ranaldo (2021) compare

transaction cost and price efficiency among DEXs and CEXs, taking gas fees into considera-

tion. They show that transaction costs are approximately comparable on CEXs and DEXs.

Whereas CEXs are superior in terms of price efficiency, DEXs eliminate custodian risk.

To the best of our knowledge, there are currently only few papers that analyze liquidity

provision on Uniswap v3. Importantly, Uniswap v3 allows LPs to set price ranges for their

positions, similar to limit orders in limit order books. Hasbrouck et al. (2022) show theo-

retically that higher-fee pools attract more liquidity providers, which reduces price impact

of trades and increases the equilibrium trading volume. Hasbrouck et al. (2023) and Cartea

et al. (2023) theoretically model optimal liquidity provision on DEXs with concentrated

liquidity (e.g., Uniswap v3). Chemaya and Liu (2022) estimate investors’ preferences for

blockchain security on scaling solutions, using a structural model.Lehar et al. (2022) focus

their analysis on liquidity fragmentation across low- and high-fee pools on Ethereum. They

argue that low-fee pools require more frequent updating in response to a higher trading

volume, catering mostly to large LPs. High-fee pools are rather attractive for passive small

(retail) LPs, due to their lower liquidity management cost. Their model also predicts that,

in presence of very low gas fees, all liquidity consolidates in a low-fee pool. Indeed, we find

strong supporting evidence for this prediction in our paper, on an example of low- and high-

fee pools on Arbitrum and Polygon. In contrast to Lehar et al. (2022), the main focus of

our study is the effect of repositioning intensity and precision of LPs on aggregate liquidity

concentration around the market price.

6



2 The landscape of cryptoassets markets

2.1 Centralized vs decentralized exchanges

Cryptoassets are currently traded on two different types of exchanges: centralized ex-

changes (CEXs) and decentralized exchanges (DEXs). Centralized exchanges, such as Bi-

nance, Kraken, Coinbase (and previously, FTX) operate using limit order books. Figure 1

presents a snapshot of Binance BTC/USDT limit order book, with the bid side (in green)

representing the cumulative BTC quantity of buy limit orders, and the ask side (in red)

representing the cumulative BTC quantity of sell limit orders. In limit order markets, liq-

uidity is usually provided by professional market makers, who strategically compete with

each other by submitting limit orders.

[Insert Figure 1 approximately here]

In contrast, decentralized exchanges operate directly on a blockchain, with liquidity usu-

ally provided through an “automated market maker” (AMM). An AMM just follows a set

of pre-programmed rules, so-called “smart contracts”, such that there is no explicit human

intervention required when a trade (or a so-called “swap”) is submitted. Each asset pair,

for example, ETH/USDC, comprises a separate liquidity pool. Liquidity providers (LPs),

including retail investors, can deposit (“mint”) liquidity to the pool by adding both assets,

or so-called tokens, in a respective ratio. They can also withdraw (“burn”) liquidity from

the pool at a later point in time. Liquidity demanders (traders) can then swap one token for

another in the pool at the current market price. Thus, in contrast to limit order markets,

proper matching of buy and sell orders is not required in an AMM. All trades are executed

against the AMM, with the market price determined by mathematical formulas in smart

contracts. Liquidity demanders pay a pre-specified exchange fee, e.g. 0.3%, for each trade

as a compensation to liquidity providers. Both liquidity demanders and liquidity providers

have to pay additional transaction fees, so-called “gas fees”, as a compensation to miners

who actually record their transactions (i.e. “swaps”, “mints”, “burns”) on the blockchain.

7



Importantly, DEXs users keep custody of their assets, because they execute trades from their

own wallets and settlement is immediate.10

Uniswap is the leading decentralized exchange, with its first version, Uniswap v1, launched

on Ethereum on November 2, 2018. The main drawback of Uniswap v1 is that it only sup-

ports trading against ETH, i.e. selling DAI for USDC requires two transactions: first, selling

DAI for ETH and, second, ETH for USDC. To overcome this problem, Uniswap v2 was re-

leased in May 2020. Importantly, Uniswap v2 does not allow for competition of liquidity

providers. The only decision liquidity providers make is whether to deposit liquidity in the

pool or not. The trading fee equals 0.3% for all pools on Uniswap v2. Fees earned from

trades are distributed pro-rata to liquidity providers, i.e. in proportion to the amount of liq-

uidity they provide in the pool. Therefore, all gains (and losses) are mutualized by liquidity

providers.

The latest version, Uniswap v3, was released in May 2021, implementing two main

changes to Uniswap v2. First, it allows some degree of competition on price between liq-

uidity providers by introducing the so-called “concentrated liquidity”. Specifically, when

depositing their tokens, LPs can now indicate the price range, i.e. the minimum and the

maximum prices in a given pool at which their liquidity position is active. However, there is

no competition on speed available, as all gains for LPs within the same price range are still

mutualized. Second, Uniswap v3 allows for four various fee tiers: 0.01%, 0.05%, 0.3% and

1%. Therefore, the same pair of assets can potentially be traded in four different pools.11

We discuss mechanics of trading on Uniswap v3 in more detail in Appendix B.

As of August 2022, $914B were traded on CEXs, out of which $443B were traded on

Binance. Panel A of Figure 2 shows monthly traded volume on CEXs (in $) from May 2017

10Barbon and Ranaldo (2021) provide an excellent overview of additional differences between CEXs and
DEXs, relating to custody of assets, fees accrual, etc.

11In contrast to Uniswap v2, fees earned by LPs are no longer deposited in the pool as liquidity. Instead,
fee earnings in Uniswap v3 are stored separately and can be withdrawn any time by LPs.
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to April 202312. Among all CEXs, Binance is dominating, with an average market share of

50%.

[Insert Figure 2 approximately here]

Total traded volume on DEXs is 12 times lower than on CEXs as of August 2022, around

$75B. However, it fluctuates considerably, with high values of $182B in November 2021 and

$112B in March 2023, and low values of $39B in December 2022. Panel B of Figure 2 shows

monthly trading volume on DEXs (in $) from January 2020 to April 2023. Uniswap v3 is

the leading DEX with a market share of 58% in August 2022, followed by PancakeSwap

with 11% and Curve with 8%. As Uniswap v3 is leading in terms of its market share among

DEXs, we focus our analysis on this DEX in our paper.

2.2 Blockchain scaling solutions: Arbitrum and Polygon

Whereas Ethereum is currently the most secure blockchain with a number of validators

exceeding 500,000 as of January 2023, its main disadvantage is low scalability. Specifically, a

block is added to Ethereum every 12 seconds after the so-called Merge, i.e. when Ethereum

moved to proof-of-stake consensus on September 15, 2022. Previously, with the proof-of-work

consensus, block time was probabilistic and averaged between 13-15 seconds. Importantly,

low scalability of Ethereum results in high gas fees, with an estimated average of gas fees for

a trade on Uniswap v3 amounting to $14 in 2022.13

To address the scalability issue, there exist overlays of Ethereum that offer higher speed

and, more importantly, lower gas fees. Arbitrum and Polygon are two of the most adopted

Ethereum scaling solutions. Currently, Uniswap v3 has also launched on the following

Ethereum scaling solutions: Optimism, Celo, BNB Smart Chain, Base and Avalanche. We

12Source: The Block, https://www.theblock.co/data.

13See Appendix A.
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conduct our study on Arbitrum and Polygon, because they have the highest total value

locked (TVL) and trading volume, in comparison to other solutions.14

2.2.1 Entry of Arbitrum

Uniswap v3 launched on Arbitrum on August 31, 2021. Arbitrum is a “rollup”, i.e. a Layer 2

(L2) scaling solution that involves “rolling up”, or accumulating, transactions on Arbitrum in

“batches”, subsequently compressing them and posting them on the Layer 1, i.e. Ethereum.

This periodic posting allows Arbitrum to inherit Ethereum’s security, subject to the posting

delay. Arbitrum uses a particular type of rollup - so-called optimistic rollup - that processes

off-chain transactions optimistically, assuming validity by default and relying on occasional

on-chain verification.15

The main benefit of rollups is that the Layer 1 blockchain, i.e. Ethereum, does not need

to validate separate transactions, but only batches of transactions. Therefore, Arbitrum (and

other rollups) can offer higher speed by processing and batching transactions off-Ethereum

before settling them on the main network.16 Average block time on Arbitrum was around 1-2

seconds at the beginning of 2022, subsequently dropping to around 0.25 seconds in 2023.17.

Importantly, transaction batching also allows rollups to offer much lower gas fees than

Ethereum. Indeed, the gas price of a transaction on Arbitrum can be split into two parts:

a part linked to the rollup network itself, which can be considered stable (it starts at 0.1

Gwei, i.e. one-billionth of ETH, and can increase with congestion), and a part linked to the

posting of batches on Ethereum, which varies depending on Ethereum’s gas price. Batch

14As of January 2023, total monthly trading volume on Arbitrum and Polygon equals $2.1B and $1.93B,
respectively. The corresponding number for Optimism is $1.1B. Total monthly trading volume never exceeds
$300M in 2023 for other solutions. See https://info.uniswap.org/ for current TVL and volume across all
Ethereum scaling solutions.

15Another category of rollups are so-called ZK (zero-knowledge) rollups, as zkSync or Polygon zkEVM. In
contrast to optimistic rollups, ZK rollups use zero-knowledge proofs for non-interactive and cryptographically
secure validation of off-chain transactions.

16See https://docs.arbitrum.io/intro for details.

17Source: https://arbiscan.io/chart/tx
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data is compressed to reduce the cost of posting on Ethereum as much as possible. 18 Still,

posting batches on Ethereum represents a significant cost for rollups, with Arbitrum offering

gas fees between $0.2 and $2 for a trade on Uniswap v3.19

2.2.2 Entry of Polygon

Uniswap v3 launched on Polygon PoS (proof-of-stake) four months later than on Arbitrum, in

December 2021. Polygon PoS is different to rollups, because it is a sidechain that requires its

own security and decentralization efforts. In contrast to Arbitrum and other rollups, it does

not automatically derive its security from the main blockchain, i.e. Ethereum. Specifically,

Polygon is secured by a proof-of-stake consensus mechanism. However, Polygon still depends

on Ethereum, because all the staking management is defined on Ethereum20 The overall

number of validators on Polygon is lower, compared to Ethereum, but it still has a decent

level of decentralization with over 100 unique validators. Whereas security of Polygon is

not as robust as Ethereum’s, fewer validators can achieve consensus more quickly, hence

leading to a shorter time between blocks and higher overall throughput.21 Average block

time on Polygon is around 2-3 seconds, compared to Ethereum’s 12 seconds.22 Thus, Polygon

can handle around 700 transactions per second (TPS)23, up to 70 times Ethereum’s TPS24.

Further, Polygon’s gas fees are the lowest, around $0.01 per transaction.25

18For details of gas fee estimation on Arbitrum, see https://docs.arbitrum.io/devs-how-tos/how-to-
estimate-gas.

19Based on Uniswap v3 frontend, https://app.uniswap.org/swap?chain=arbitrum

20While validators are required to stake MATIC tokens to secure the network, users stake them in an
Ethereum smart contract while bridging assets to Polygon.

21Chemaya and Liu (2022) discuss in detail the trade-off between security and scalability of Ethereum
scaling solutions, including Polygon.

22See https://polygonscan.com/chart/blocks.

23Source: Polygon’s blog, https://polygon.technology/blog/what-do-you-prefer-maximum-security-or-
cheaper-transactions.

24Source: Binance Academy, https://academy.binance.com/en/glossary/transactions-per-second-tps.

25Polygon’s base gas fee is around $0.01 per transaction, but users can also add so-called gas tips to miners
to prioritize the order of their transaction within the block. Still, most of transactions on Polygon only cost
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Polygon’s and Arbitrum’s liquidity pools are separate to those on Ethereum, i.e. liquidity

is fragmented across pools. Thus, the same liquidity pool, ETH/USDC 0.05% for example,

can exist on multiple chains, Ethereum, Polygon, Arbitrum and other scaling solutions. In

our following analysis, we use the launch of Uniswap v3 on Arbitrum and Polygon as an

instrument to identify the effect of lower gas fees on liquidity and its distribution around the

market price.

3 Data and summary statistics

We analyze the two most liquid pairs on Uniswap v3, ETH/USDC 0.05% and ETH/USDC

0.3%, that are traded across all three chains: Ethereum, Arbitrum and Polygon. Hence,

our benchmark sample consists of six distinct pools.26 For comparability across chains, we

always use ETH as the base token and USDC as the quote token, i.e all data are presented

for the ETH/USDC pair. ETH/USDC 0.05% is a low-fee pool that charges 5bp for each

trade, or swap (in addition to the gas fee on the respective chain). ETH/USDC 0.3% is a

high-fee pool that charges 30bp for each swap (in addition to the gas fee).27

We also replicate our main results for four additional pairs, BTC/ETH 0.05%, BTC/ETH

0.3%, UNI/ETH 0.3% and LINK/ETH 0.3%, in Tables IA2 and IA4 in the Internet Ap-

pendix. We choose these pairs because they are among few that are relatively actively

traded across all three chains, mapping into twelve additional pools. For our analysis, we

require a pair to be traded across all three chains. Further, we need it to be relatively liquid

to be able to identify the effect of repositioning intensity. Hence, the sample of pools that

satisfy the two criteria above is quite limited.

Our sample period starts after the launch of Uniswap v3 on Polygon, on January 1,

a few cents in gas fees.

26All pools on Uniswap v3 use wrapped ETH (WETH) instead of Ethereum’s native ETH as they only
support ERC-20 tokens.

27Lehar et al. (2022) show that liquidity on Ethereum is fragmented across low- and high-fee pools due to
different economies of scale across LPs.
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2022, and ends on June 30, 2023.28 We download historical logs of Ethereum, Arbitrum and

Polygon transactions (swaps, mints and burns on Uniswap v3), using The Graph queries.

Panel A of Table 1 compares volume and liquidity for both low- and high-fee pools across

Ethereum, Arbitrum and Polygon. Specifically, we report the average trading volume over

the previous 24 hours and the average liquidity size, measured as total value locked (TVL),

both in $M.29

[Insert Table 1 approximately here]

Unsurprisingly, both volume and TVL on Ethereum significantly exceed those on scal-

ing solutions. For example, the average 24-hour volume for Ethereum’s most liquid pool,

ETH/USDC 0.05%, is $513.73M, around 10 times higher than Arbitrum’s $51.93M and 18

times higher than Polygon’s $29.03M. Ethereum’s average TVL of $201.19M is around 11

times higher than Arbitrum’s $18.04M and around 20 times higher than Polygon’s TVL of

$10.26M. Notably, the turnover, measured as the ratio of volume to TVL, is approximately

the same across all three chains (as reported in the last column of Table 1). We observe

much lower trading volume and TVL for the high-fee pool, ETH/USDC 0.3%, especially on

Arbitrum and Polygon. These findings are consistent with theoretical predictions of Lehar

et al. (2022) that lower gas fees lead to lower fragmentation of liquidity across high- and

low-fee pools. As gas fees on Arbitrum and Polygon are relatively cheap, it is optimal for

LPs to actively manage their positions in the low-fee pool. Thus, most of liquidity provision

takes place on the low-fee pool on Arbitrum and Polygon, and not on the high-fee pool.

We further provide summary statistics of trade sizes and trade frequencies in Panels B and

C of Table 1. Panel B shows that the average trade size on Ethereum is significantly larger

for both pools. For example, the average trade size for ETH/USDC 0.05% on Ethereum is

28Prior to 2022, there was not enough trading volume on any of blockchain scaling solutions. For this
reason, we start our sample at the beginning of 2022.

29Total value locked (TVL) on DEXs corresponds to aggregate market depth on CEXs, i.e. total liquidity
available on both bid and ask sides of the limit order book.
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around $72K. In contrast, Arbitrum’s and Polygon’s average trade size for this pool are much

lower, around $4K and $2.5K, respectively. We observe even lower trade sizes on Arbitrum

and Polygon for ETH/USDC 0.3%, most likely because of their overall lower TVL on these

scaling solutions. In contrast, we observe that the high-fee pool has a larger average trade

size of $116K on Ethereum, compared to the low-fee pool. This finding is consistent with the

theory of Hasbrouck et al. (2022) that pools with higher fees attract more liquidity providers,

increasing their TVL and attracting larger trades.

Panel C of Table 1 reports the average daily number of trades as well as the average

daily number of purchases and sales across the three chains. Strikingly, both Arbitrum and

Polygon have almost twice as many trades, around 12.5K per day, compared to Ethereum’s

7K for ETH/USDC 0.05%. For ETH/USDC 0.3%, the number of trades is approximately

the same across all chains. For all pools, the order flow is balanced, i.e. the average daily

number of buys is approximately equal to the average daily number of sells. We also report

the average time between the trades (in seconds) in the last column. Overall, we conclude

that the higher volume on Ethereum is mostly driven by larger trades being executed on

this chain. In contrast, Arbitrum and Polygon are rather used by smaller traders who trade

more frequently.

As discussed in Section 2.2, Ethereum’s larger liquidity can be explained by its higher

security. Liquidity providers would like to minimize the risk of losing their funds, especially

so for large liquidity deposits. Therefore, Ethereum is mostly used for large liquidity deposits,

resulting in higher TVL. Large traders are also attracted to Ethereum, both due to its higher

security and larger liquidity, which helps them reduce the slippage of their trades. Since

gas fees are fixed, they are not of primary concern for large traders. In contrast, blockchain

scaling solutions are rather attractive for smaller traders, who are primarily concerned about

gas fees, and less so about security. Thus, we observe a separating equilibrium, in which

large traders and LPs choose Ethereum due to its higher security, whereas small traders and

LPs choose Arbitrum and Polygon due to their lower gas fees.
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Table 2 reports summary statistics of control variables, which we use later in our regres-

sions: trading volume over the previous 24 hours, V olume, (in $M); the 1-minute return of

ETH/USD, Return (in bp); and the realized volatility of ETH/USD, V olatility, computed

as the square root of the sum of squared 1-minute returns over the previous 24 hours (in %).

Both V olatility and Return are based on a single time series for ETH/USD from Binance.

1-minute returns are strongly balanced, with positive and negative returns being of approx-

imately the same magnitude, with both the average and the median Return close to zero.

The average daily realized volatility of 3.53% of ETH/USD corresponds to an annualized

volatility of 67.44%. Appendix E provides a detailed description of all variable definitions.

4 Repositioning and liquidity concentration

In this section, we test the effect of lower gas fees, provided by blockchain scaling solutions,

on liquidity concentration around the current pool price. We start with formulating our

hypotheses in Section 4.1. We then test the causal relation between repositioning intensity

and liquidity concentration, using instrumental variable regressions, in Section 4.2. Section

4.3 examines the causal relation between repositioning precision and liquidity concentration.

4.1 Hypotheses development

Higher speed of transaction processing and lower gas fees on blockchain scaling solutions

allow liquidity providers to update their positions more frequently. Should a permanent price

change occur, LPs can withdraw and re-deposit their positions, re-setting the price range

around the new market price more quickly and at a cheaper cost. Thus, higher speed and

lower gas fees help LPs better protect their positions from adverse selection by arbitrageurs.

Being able to better protect themselves, LPs can earn higher fees (for the same deposited

amount) by concentrating their positions around the market price.

In contrast, when updating is costly, we expect LPs to post their liquidity on wider
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price ranges. In absence of updating, posting on a wider range provides better protection

from adverse selection relative to a narrow price range.30 Therefore, we expect less frequent

updating when gas fees are higher, with LPs updating their positions only if the market

price significantly deviates from the position range. Wider liquidity positions should then

result in less concentrated aggregate liquidity around the market price.

[Insert Figure 3 approximately here]

Figure 3 further illustrates our predictions with a stylized numerical example. In Panel A,

we assume that ETH price (in USDC) experiences a permanent increase from 1,000 to 2,000.

Without updating, an LP’s position is adversely selected by an arbitrageur, who submits a

buy trade. The arbitrageur’s trade moves the market price to the new level, depleting all

ETH reserves in the LP’s position and leaving him only with USDC. The LP experiences an

adverse selection loss of $500K, compared to the scenario, in which he would just buy and

hold his initial portfolio of ETH and USDC, without providing liquidity on a DEX.

Panel B shows that the LP could partially protect himself from adverse selection by

redistributing the same amount of capital on a wider price range. Thus, his position would

be less concentrated around the market price. Posting on a wider price range would reduce

LP’s losses to $300K, because average execution price for his ETH reserves would be higher,

compared to Panel A. In contrast, Panel C assumes that the LP continuously monitors the

market and is able to update his position even before the arbitrageur’s trade arrives. In this

scenario, the LP is able to fully avoid adverse selection loss and makes a profit of $500K. It

is optimal for him to set a narrower price range, i.e. make his position more concentrated,

in order to earn higher rewards.

Being able to immediately update is the first-best solution for any LP. However, updating

is costly and requires continuous monitoring. Therefore, we expect LPs to reposition more

30Cartea et al. (2023) also show theoretically that wider position ranges protect the value of LP’s assets.
However, they do not model explicitly the ability of LPs to update their positions and the role of gas fees,
i.e. cost of updating.
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frequently when updating is relatively cheaper, i.e. on blockchain scaling solutions. In the

following, we refer to the position updating frequency of LPs as repositioning intensity. We

formalize our first hypothesis as follows:

Hypothesis 1. Compared to Ethereum, higher repositioning intensity on blockchain

scaling solutions leads to higher aggregate liquidity concentration around the current market

price.

Whereas we use repositioning intensity as our benchmark measure, it could be that

liquidity providers do not necessarily update their positions close to the new market price.

Specifically, repositioning intensity does not take into account whether liquidity positions

are centered around the market price or not. Further, a position might be centered around

the market price, but it could also have a wide price range, which should not necessarily

result in higher liquidity concentration. To address these issues, we also focus our analysis on

repositioning precision, which we define as the distribution of individual liquidity positions

around the market price.

Specifically, we expect repositioning precision to be higher on blockchain scaling solutions.

With lower gas fees and better protection from adverse selection, we expect LPs to make

their positions more concentrated around the market price, i.e. we expect them to re-

post on a narrow price range, with the mid-price of the range close to the current market

price. More concentrated individual positions allow LPs to maximize their rewards from

liquidity provision. Importantly, more concentrated individual positions should result in

higher aggregate liquidity concentration around the current market price. Based on these

predictions, we formalize our second hypothesis as follows:

Hypothesis 2. Compared to Ethereum, higher repositioning precision on blockchain

scaling solutions leads to higher aggregate liquidity concentration around the current market

price.

Higher liquidity concentration around the market price is important, because it affects

slippage. In this paper, we define slippage of a trade as the difference between the average
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execution price and the observed pre-execution market price.31 For a given TVL, higher

liquidity concentration around the market price should reduce the slippage of any trade.32

In contrast, less concentrated aggregate liquidity should increase slippage for a given TVL.

Importantly, Arbitrum’s and Polygon’s TVL is significantly lower than Ethereum’s (see

Panel A of Table 1). Ethereum’s large TVL, which corresponds to overall market depth, is

still of first-order importance for slippage of large trades, relative to liquidity concentration.

Hence, we expect large trades to have overall lower slippage on Ethereum due to its higher

TVL. Based on these differences in observed TVL, slippage is only comparable for smaller

trades (up to $5K) between Ethereum and blockchain scaling solutions.33 Therefore, we

formalize our third hypothesis as follows:

Hypothesis 3. Higher liquidity concentration on blockchain scaling solutions should

result in lower slippage for small trades (up to $5K), compared to Ethereum. For large

trades (above $5K), slippage should be lower on Ethereum due to its higher TVL.

4.2 Repositioning intensity and liquidity concentration

Liquidity concentration. We start by comparing aggregate liquidity concentration around

the market price across Ethereum and blockchain scaling solutions. Specifically, we define

liquidity concentration within x% of the market price, as the market depth within x% of

pmkt, divided by TV L. Market depth within x% of pmkt is computed as the dollar value of

the liquidity between pmkt

1+x%
and pmkt · (1 + x%). Table 3 reports average levels of liquidity

concentration across Ethereum, Arbitrum and Polygon, separately for low-fee and high-fee

pools.

31See Section 5 as well as Appendix C and D for details of slippage computation on Uniswap v3.

32For pools with large TVL in the current price range, higher liquidity concentration might not have any
effect on slippage of a small trade. However, higher liquidity concentration is still beneficial for larger trades
that would otherwise exhaust liquidity in the current price range.

33Panel B of Table 1 shows that the 75th percentile of trades on both Arbitrum and Polygon never exceeds
$5K, with average trade sizes of $2K-$4K.
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[Insert Table 3 approximately here]

Column (1) reports average levels of liquidity concentration within 1% of the market price.

Columns (2) and (3) report corresponding statistics for liquidity concentration within 2% and

10% of the market price, respectively. Liquidity concentration mechanically increases with

the percentage band, i.e. market depth as percentage of TVL within 10% of the market price

is by construction higher than within 1% of the market price. More surprisingly, only around

24%-42% of all liquidity is concentrated within 10% for all pools. Hence, around two thirds of

TVL are further away than 10% from the market price across all pools. Consistent with our

expectations, we find strong evidence for higher liquidity concentration on blockchain scaling

solutions across all percentage bands, compared to Ethereum. We observe the differences

between average liquidity concentration on Arbitrum and Ethereum, ∆Arb−Eth, of 0.93%-

5.36%. The corresponding numbers for differences between Polygon and Ethereum, ∆Pol−

Eth, are 1.18%-14.54%. T-statistics of the two-tailed t-test with the null-hypothesis of

difference equaling zero all exceed 100, i.e. all differences are statistically significant at the

1% level.

Figure 4 further illustrates the distribution of aggregate liquidity around the market price

for ETH/USDC 0.05% pool, separately for Ethereum, Arbitrum and Polygon. Specifically,

we use hourly snapshots to calculate average liquidity within each price range, scaled by

TVL (in %), over our sample period January 1, 2022 - June 30, 2023. Consistent with our

findings in Table 3, we observe higher liquidity concentration around the market price for

Arbitrum and Polygon, relative to Ethereum, i.e. liquidity distribution is more ”peaked” for

blockchain scaling solutions.

[Insert Figure 4 approximately here]

Liquidity provision and repositioning intensity. We further examine differences

in liquidity provision and repositioning intensity across Ethereum and blockchain scaling

solutions in Table 4. For all our analyses of liquidity provision, we filter out liquidity mints
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and burns, for which the mid price of their range, computed as
√
plower · pupper, lies further

than 20% away from the market price. We treat these mints and burns as outliers and

exclude them from our analysis.34 We further exclude so-called “just-in-time” (JIT) liquidity

positions, which are used to provide “flash” liquidity within the same block to large trades

on Ethereum towards the end of our sample.35 JIT positions represent around 27% of our

sample on Ethereum and less than 2.5% on Arbitrum and Polygon. We exclude them, since

this “flash” liquidity does not affect TVL and thus, liquidity concentration, which is our

main variable of interest. Further, JIT liquidity provision only benefits a few large traders

on Ethereum, and is generally not used to provide liquidity for small trades.

[Insert Table 4 approximately here]

We report the average daily number of mints for each chain in column (1) and the average

daily number of burns in column (4). Compared to Ethereum, we observe significantly more

frequent minting and burning of liquidity on Arbitrum and Polygon for ETH/USDC 0.05%

pool. A mint on Arbitrum (Polygon) takes place on average every 4.57 (2.63) minutes and

a burn every 6.05 (3.88) minutes, as compared to Ethereum’s 17.73 and 23.40 minutes,

respectively (see columns 2 and 5). However, the average daily minted value on Arbitrum

(Polygon) of around $11.75M ($2.95M) is significantly lower than $41.19M minted daily

on Ethereum (column 3). Average daily burned values on Arbitrum and Polygon are of

approximately the same magnitude as daily minted values, and also significantly lower than

Ethereum’s $39.9M (column 6).

For ETH/USDC 0.3%, the daily number of mints is approximately the same across

Ethereum and blockchain scaling solutions, with a mint occurring every 20 minutes on each

34These positions represent around 13% of our overall sample. Our main findings continue to hold irre-
spective of the cutoff that we use to filter out outliers (for example, 10% or 30% away from the current
price). Minting and burning with the mid price far away from the current market price could potentially be
used by “wash LPs”, who aim to artificially increase TVL in the pool for improving its overall statistics.

35Lehar et al. (2022) also exclude JIT positions from their analysis. JIT positions involve minting liquidity
just before the large trade and subsequently burning the position, all within the same block.
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of the chains. The daily minted value is much lower on Arbitrum and Polygon, which is

consistent with our prior findings of overall lower TVL for high-fee pools on blockchain

scaling solutions. Consequently, the daily burned value is also lower for high-fee pools on

Arbitrum and Polygon. These findings further support predictions of Lehar et al. (2022)

that all liquidity mostly consolidates in the low-fee pool in presence of low gas fees.

More frequent minting and burning liquidity on blockchain scaling solutions, especially

for the low-fee pool, suggests more intense liquidity repositioning. We next measure reposi-

tioning intensity, Intensity, more explicitly. Specifically, we define repositioning as a burn,

followed by a mint, in the same pool by the same liquidity provider within next five minutes.

In the following, we refer to mints, associated with repositioning, as ”repositioning mints”.

We then compute repositioning intensity as the dollar value of repositioning mints over a

5-minute interval, divided by the total dollar value minted over the same interval:

Intensity =
RepositioningMinted$

TotalMinted$
, (1)

Intensity can take values between 0 and 1, with higher values associated with more

intense repositioning. We use five minutes as our benchmark time interval for computing

intensity, because it represents the average time between all mints and burns in our sample.

However, we also check that all our results are robust if we use the median time of one

minute between all mints and burns in our sample instead.

Column (7) of Table 4 presents the average 5-minute repositioning intensity (in %) across

Ethereum, Arbitrum and Polygon. For ETH/USDC 0.05%, the repositioning intensity on

Arbitrum (Polygon) is 40.64% (35.90%), which is more than double as high, compared to

Ethereum’s 15.89%. For ETH/USDC 0.3% we observe overall lower levels of intensity across

all three chains, as compared to the low-fee ETH/USDC 0.05% pool. Indeed, high-fee pools

are mostly used by more passive liquidity providers (LPs), consistent with prior findings
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of Lehar et al. (2022). Importantly, Intensity on both Arbitrum and Polygon of 17.10%-

24.78% is still two to three times higher for the high-fee pool, relative to Ethereum’s 7.29%.

Overall, as expected, we observe significantly more repositioning taking place on blockchain

scaling solutions, driven by higher speed of transaction processing and lower gas fees.

Instrumental variable (IV) regressions. So far, we find that both liquidity con-

centration and repositioning intensity is significantly higher on blockchain scaling solutions,

relative to Ethereum. In this section, we would like to explicitly test our Hypothesis 1, show-

ing the causal relation between repositioning intensity and liquidity concentration on DEXs.

The straightforward approach to test this association is by regressing liquidity concentration

on repositioning intensity and other variables, controlling for market conditions. However,

the choice of an LP to update their position, i.e. burn and subsequently mint at a new price

range, is potentially endogenous, and can in itself depend on the current liquidity concentra-

tion in the pool. Hence, the slope coefficient on repositioning intensity from standard OLS

estimation would represent a biased estimate of its causal effect on liquidity concentration.

To identify the causal effect of repositioning intensity, we use the launch of Uniswap v3

on Arbitrum and Polygon as our instrument for an exogenous increase in updating frequency

of LPs. For any instrument to be valid, it has to satisfy two criteria. First, the instrument

must be correlated with the endogenous explanatory variable, i.e. it should induce change

in the explanatory variable. Second, it must satisfy the exclusion restriction, i.e. it should

not be correlated with the error term in the explanatory equation. The first condition holds,

because we indeed observe more frequent repositioning by LPs on blockchain scaling solutions

as a result of much lower gas fees (see Table 4). For exclusion restriction to hold, Uniswap’s

launch on blockchain scaling solutions should not affect liquidity concentration other than

through its effect on repositioning intensity. We argue that such correlation with the error

term is rather unlikely, because it would mean that Uniswap v3 chose its entry date on

Arbitrum (Polygon) strategically and was able to accurately predict a market-wide increase
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in liquidity concentration.36 Our setup is similar to Hendershott et al. (2011), who use the

introduction of NYSE Autoquote as an instrument for an exogenous increase in algorithmic

trading, and investigate its causal effect on liquidity.

To test the causal relation between repositioning intensity and liquidity concentration,

we next run instrumental variable regressions. We first estimate the following first-stage

regression, separately for each pool:

Intensityt = α + β1Arbitrum/Polygont +

+ β2V olumet + β3V olatilityt + β4|Return|t

+ HourFE +DayFE + εi,t,

where Arbitrum (Polygon) takes value of 1 for Arbitrum (Polygon) pool, and equals

zero for the corresponding Ethereum pool. Intensity and |Return| are measured over 5-

minute intervals. V olume is the volume over previous 24 hours and V olatility is the realized

volatility over previous 24 hours, both measured at the end of each 5-minute interval. All

regressions include hour- and day-fixed effects and allow standard errors to cluster at the

day level.

[Insert Table 5 approximately here]

Panel A of Table 5 reports the results for ETH/USDC 0.05%. The coefficient of 0.24 on

Arbitrum in Model (1) implies that repositioning intensity is 24% higher on Arbitrum for

this pool, relative to Ethereum. This coefficient is consistent with our previous statistics on

∆Arb−Eth from Table 4. We find that repositioning intensity on Polygon is also significantly

higher by 20%, relative to Ethereum (Model 3). We next include both Arbitrum and Polygon

pools in one regression. In Model (5), we define BlockScaling as an indicator variable that

36We also discuss potential alternative explanations of our findings in Section 6.
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takes value of 1 for Arbitrum and Polygon pools, and zero for the Ethereum pool, used as a

benchmark. On average, we observe 21% higher repositioning intensity on blockchain scaling

solutions, relative to Ethereum.

Models (2), (4) and (6) report corresponding results for the second-stage regression:

Conct = α + β1Intensityt +

+ β2V olumet + β3V olatilityt + β4|Return|t

+ HourFE +DayFE + εi,t,

Liquidity concentration, Conc, is measured within 2% of the current market price at the

end of each 5-minute interval. The set of instruments consists of all explanatory variables,

except that we use Arbitrum in place of Intensity in Model (2). In Models (4) and (6),

we use Polygon and BlockScaling in place of Intensity, respectively. Overall, Models (2),

(4) and (6) show that an increase in repositioning intensity significantly increases liquidity

concentration within 2% of the market price. The IV estimates of 0.09-0.11 on Intensity

variable mean that a 1% increase in Intensity increases liquidity concentration by around

10% for ETH/USDC 0.05% pool. The average standard deviation for Intensity is 0.4384

for this pool, such that a one-standard deviation change in Intensity is associated with a

0.4384 · 0.10 = 0.0438 or 4.38% change in liquidity concentration. This value is economi-

cally significant, because it represents a 43% increase from the mean liquidity concentration

(within 2% of the market price) of 10.16% on Ethereum.

We also observe a significant effect of repositioning intensity on liquidity concentration

for the high-fee pool in Panel B, with IV estimates on Intensity of 0.08 for Arbitrum and

0.22 for Polygon. Table 4 shows that an increase in the repositioning intensity is higher on

Polygon for this pool, hence we observe a stronger effect, relative to Arbitrum.

To analyze which subset of LPs are actively engaging in repositioning, we next split LPs
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by their aggregate minted and burned dollar value in each pool. In other words, for each

LP, we sum up their total minted and burned liquidity (in $) over our entire sample period,

separately for each chain and each pool. We then define large LPs as those in the top quartile

of our sample distribution, i.e. those with the highest dollar value minted and burned. We

replicate our previous analysis from Table 5 for a subset of large LPs. Unsurprisingly, they

are practically identical to our benchmark findings in Table 5 (see Table IA1 in the Internet

Appendix). Overall, these findings suggest that repositioning is indeed largely done by the

largest (professional) liquidity providers on each chain.

We also replicate our analysis from Table 5 for four additional pairs: BTC/ETH 0.05%,

BTC/ETH 0.3%, UNI/ETH 0.3% and LINK/ETH%. We choose these pairs because they

are among few that are relatively actively traded across all three chains, mapping into twelve

additional pools. All of these pairs have ETH as their quote token, and are therefore more

volatile relative to our benchmark ETH/USDC pair. Table IA2 in the Internet Appendix

presents the results of pooled regressions across all four pairs. Overall, all our previous

findings for our benchmark pair, ETH/USDC, continue to hold. On average, we observe

15% higher repositioning intensity on blockchain scaling solutions, relative to Ethereum.

Further, an increase in repositioning intensity significantly increases liquidity concentration

by around 29%.

Robustness checks. Table 6 presents robustness checks of our main findings. Panel A

presents results for the low-fee pool, and Panel B for the high-fee pool. Models (1) and (2)

report results of the second-stage IV regressions with BlockScaling as an instrument for the

low-fee pool (similar to our benchmark Model 6 in Table 5), using liquidity concentration

within 1% and within 10% of the current market price as the dependent variable, respectively.

We observe that the effect of repositioning intensity on liquidity concentration increases with

the percentage band, i.e. it affects liquidity concentration within 10% (2%) to a larger extent

than within 2% (1%). This effect is likely due to more repositioning taking place within 10%

(2%) of the market price, as opposed to repositioning within 2% (1%).
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[Insert Table 6 approximately here]

Model (3) replicates our analysis from benchmark Model (6) in Table 5, using an alter-

native measure for repositioning intensity, IntensFreq, defined as the ratio of the number

of repositioning mints to the total number of mints within a 5-minute interval. The IV esti-

mate on IntensFreq of 0.24 for the low-fee pool is even higher, compared to the benchmark

estimate of 0.11 from Panel A of Table 5. Model (4) uses another alternative measure of

Intensity, based on the 1-minute repositioning mints, which is the median time between all

mints and burns in our sample. In this analysis, we classify repositioning mints as those

that are preceded by burns of the same LP within the previous minute. The IV estimate

of 0.16 is of comparable economic magnitude to our benchmark estimate. In Model (5), we

use aggregation, based on 10-minute intervals instead of 5-minute intervals. The results are

practically identical to our benchmark estimate. We also observe similar patterns for all

robustness tests for the high-fee pool in Panel B.

To sum up, we find strong empirical evidence for our Hypothesis 1. Our instrumental

variable regressions show that higher repositioning intensity on blockchain scaling solutions

indeed leads to higher aggregate liquidity concentration around the current market price,

both for the low-fee and the high-fee pools.

4.3 Repositioning precision and liquidity concentration

Repositioning precision. We next test our Hypothesis 2 about the causal link of reposi-

tioning precision and aggregate liquidity concentration around the current market price. We

use three measures for repositioning precision: position gap, position length and position

precision. Our first measure is position gap, Gap, computed as
∣∣∣ pmid

pmkt
− 1

∣∣∣, where pmid is the

mid price of the position. For each position, posted on the range [plower, pupper], we compute

pmid as
√
plower · pupper. The lower the position gap, the closer the mid price of minted posi-

tions to the market price. Therefore, Gap is inversely related to repositioning precision. We
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report the average position gap (in %) across all repositioning mints in Column (1) of

Table 7.

[Insert Table 7 approximately here]

For ETH/USDC 0.05%, we observe the average position gap of 1.86% on Ethereum, i.e.

liquidity providers re-position their mints on average 1.86% away from the market price.

Consistent with our prior expectations, we find that the average position gap on blockchain

scaling solutions is significantly lower by 0.8%-1%, which represents an improvement in

repositioning precision of around 50%. For the high-fee pool, the average position gap on

Ethereum is higher, 3.41%, because liquidity providers do not reposition as often for this pool,

compared to the low-fee pool. However, we also observe significant precision improvement

on blockchain scaling solutions for this pool by around one third (i.e. by 1%-1.3%).

Our second measure of repositioning precision is position length, Length, computed as

|pupper−plower|
pmid

. The shorter the position length, the narrower the position is. Similar to Gap,

it is inversely related to repositioning precision. We report the average position length (in %)

across all repositioning mints in Column (2) of Table 7. For the low-fee pool, we observe that

positions are significantly narrower by 7.38% on Arbitrum and 5.16% on Polygon, relative

to the average value of around 18% on Ethereum. For the high-fee pool, positions are

overall substantially wider on Ethereum, in the range of 30%. This result is consistent with

more passive liquidity providers (with lower repositioning intensity) posting wider ranges

on high-fee pools to protect themselves from adverse selection. Importantly, we observe

substantially narrower positions in this pool on blockchain scaling solutions by around 14%.

This substantial reduction in position length for the high-fee pool is due to lower gas fees

on Arbitrum and Polygon. With low gas fees, it is cheaper, even for relatively more passive

(i.e. retail) liquidity providers, to update their positions, protecting themselves from adverse

selection.

The previous two measures look separately at the mid price of the position range and

on its length. Our third measure, position precision, Precision, combines the previous
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two to address a potential criticism that positions with lower gaps could potentially be

wider, or, alternatively, narrower positions could be posted further away from the market

price. We compute Precision as 1
Gap·Length and further scale it to lie in the range [0,1] as

1 − 1.0001
−1

Gap·Length . P recision has the lowest possible value of 0 and the highest possible

value of 1, or 100%. As for other measures, we compute the average precision across all

repositioning mints.

Column (3) of Table 7 shows that position precision is indeed significantly higher on

blockchain scaling solutions, relative to Ethereum. For ETH/USDC 0.05%, Precision is

higher by 18%-20%, relative to the average value of 51% on Ethereum. As expected, position

precision is generally lower for the high-fee pool with more passive liquidity providers, around

20% on Ethereum. Importantly, it almost doubles on blockchain scaling solutions, increasing

by 17% on Arbitrum and by 22% on Polygon.

Overall, our univariate results confirm that liquidity providers re-position on Arbitrum

and Polygon not only closer to the market price, but also at significantly narrower ranges.

Thus, lower gas fees result in both higher repositioning intensity and higher repositioning

precision around the market price.

Instrumental variable (IV) regressions. We next test the causal relation between

repositioning precision and liquidity concentration. Similar to repositioning intensity, repo-

sitioning precision is endogenous. To address this issue, we use the launch of Uniswap v3

on blockchain sclaing solutions as our instrument for an exogenous increase in repositioning

precision. Since LPs are able to reposition more frequently on Arbitrum and Polygon, they

are better able to protect themselves from adverse selection. Hence, for the same amount

of capital deposited, LPs can maximize their rewards from liquidity provision by improving

the precision of their positions, i.e. minting positions that are more concentrated around

the market price. Indeed, our findings from Table 7 show that repositioning precision is

significantly higher on both Arbitrum and Polygon, relative to Ethereum.

We re-estimate our previous instrumental variables regressions, with Blockscaling now
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used as an instrument for repositioning precision. Table 8 reports results for instrumental

variable regressions, separately for three measures of repositioning precision.37

[Insert Table 8 approximately here]

Models (1) and (2) show results with position gap as a measure of repositioning preci-

sion. Model (1) reports results of the first-stage IV regression, with Gap as the dependent

variable and Blockscaling as the main explanatory variable. Consistent with previous find-

ings in Table 7, we observe significantly lower position gaps on blockchain scaling solutions,

relative to Ethereum. Model (2) shows results of the second-stage IV regressions, with liq-

uidity concentration within 2% of the market price as the dependent variable.38 Consistent

with Hypothesis 2, we find that higher position gaps significantly reduce liquidity concen-

tration around the current market price. The average standard deviation for Gap is 0.023

for ETH/USDC 0.05%. Therefore, the IV estimate of -4.15 means that a one-standard de-

viation increase in Gap is associated with a 0.023 · −4.15 = −0.0954 or 9.54% decrease in

liquidity concentration. As expected, we also observe a significant negative effect of Length

(Models 3 and 4) and a significant positive effect of Precision (Models 5 and 6) on liquidity

concentration for both pools.

We also replicate our analysis from Table 8 for four additional pairs: BTC/ETH 0.05%,

BTC/ETH 0.3%, UNI/ETH 0.3% and LINK/ETH%. Table IA4 in the Internet Appendix

presents the results of pooled regressions across all four pairs. Consistent with our benchmark

results, we find a significant negative effect of Gap and Length and a significant positive effect

of Precision on liquidity concentration within 2% of the market price.

Consistent with our Hypotheses 1 and 2, our results in this section show that both repo-

sitioning intensity and precision increase liquidity concentration around the market price.

As both these variables are potentially endogenous, we use the launch of Uniswap v3 on

37Table IA3 in the Internet Appendix reports results separately for Arbitrum and Polygon. To conserve
space, we only present combined results for Blockscaling in Table 8.

38All our results also hold if we use liquidity concentration within 1% or 10% as the dependent variable.
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Arbitrum and Polygon as our instruments to identify the causal effect of repositioning in-

tensity and precision on liquidity concentration. An increase in liquidity concentration is

important because it reduces slippage, for a given TVL. In the next section, we explicitly

compare slippage for trades of different sizes on Ethereum and blockchain scaling solutions.

5 Slippage: Ethereum vs blockchain scaling solutions

In this paper, we define slippage of a trade as the difference between the average execution

price, pavg =
∆y
∆x

and the pre-execution pool price, pmkt:

Slippage =
∣∣∣ pavgpmkt

− 1
∣∣∣

In other words, slippage shows by how much the execution price is worse than the previ-

ously displayed market price.39 Slippage is greater for larger trades and, as in Kyle (1985), is

inversely related to market depth. Appendix C discusses mechanics of trade execution and

derivations of average execution prices on Uniswap v3. Appendix D provides a numerical

example of slippage computation on DEXs.

We compute slippage, Slippage, for hypothetical trades of sizes [$100, $500, $1K, $5K,

$10K, $50K, $100K] at the end of each 5-minute interval over our sample period (January

1, 2022 - June 30, 2023). Panel A of Table 9 presents summary statistics for Slippage (in

bp), separately for each chain.

[Insert Table 9 approximately here]

Given Ethereum’s overall larger TVL, it is not surprising that its average slippage of 0.3

bp for the low-fee pool is significantly lower than Arbitrum’s 8.8 bp and Polygon’s 4.25 bp.

39The term “slippage” on Uniswap is defined more broadly as the percentage difference between the quoted
price at the time of submitting the transaction and the actual execution price. For instance, a sandwich
attack could also cause slippage. However, our definition abstracts from “sandwich attacks”, assuming that
nothing happens between submission and execution, and refers to the difference of the average execution
price relative to the market price.
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The median slippage of 0.60-0.73 bp on blockchain sclaing solutions is also higher, compared

to Ethereum’s 0.05 bp. As expected, average and median slippage values are higher for the

high-fee pool across all chains, due to its lower TVL. However, these statistics represent the

average across both small hypothetical trades of $100, $500, etc. and large hypothetical

trades of up to $100K. As Arbitrum and Polygon are mostly used by smaller traders, the

main focus of our analysis will be the comparison of slippage for small trades across Ethereum

and scaling solutions.

Before conditioning on trade size, we first confirm our findings from Panel A in a multi-

variate setup. Specifically, we estimate following OLS regressions:

Slippagei,t = α + β1BlockScalingi,t + β2Sizei,t +

+ β3Buyi,t + β4V olumei,t + β5V olatilityi,t + β6|Return|i,t

+ HourFE +DayFE + εi,t.

The dependent variable, Slippage, shows the slippage for a trade of a given size for

pool i at the end of each 5-minute interval t (from the end-of-minute snapshot of liquidity

distribution). As before, BlockScaling, equals 1 for transactions on Arbitrum and Polygon,

and zero for Ethereum. Therefore, trades on Ethereum serve as a benchmark sample. The

vector of control variables includes trade size (in $K), Size; the direction of the trade, Buy,

that equals 1 for purchases of token X and 0 for its sales; trading volume over previous 24

hours (in $M), V olume; realized volatility of ETH/USD over previous 24 hours, V olatility;

and absolute return of ETH/USD over the previous minute, |Return|. All regressions include

hour- and day-fixed effects and allow standard errors to cluster at the day level.

Panel B of Table 9 reports results for ETH/USDC 0.05% pool. The coefficient on

BlockScaling in Model (1) shows that slippage on blockchain scaling solutions is on av-

erage 1.41 bp higher, relative to the average slippage on Ethereum, after including control

31



variables. Unsurprisingly, slippage is increasing in the size of the trade. It does not differ

significantly between buys of token X and its sells. Further, slippage is decreasing in the

trading volume, implying that LPs deposit more liquidity if they observe higher volume over

previous 24 hours. This finding is consistent with our prior expectations, because LPs can

earn higher fees in periods of higher volume. Finally, slippage is increasing in both the

absolute return of ETH/USD over the previous five minutes and the realized volatility over

previous 24 hours. These findings are also in line with our expectations, suggesting that LPs

are more likely to withdraw liquidity from the pool during times of higher uncertainty. We

observe similar findings for the high-fee pool in Panel C, with slippage on average higher by

21.61 bp on blockchain scaling solutions,

We next test our Hypothesis 3, which predicts that higher liquidity concentration on

blockchain scaling solutions should result in lower slippage for small trades. Hence, we

condition our analysis on trade size, using the $1K and the $5K cutoffs to split trades into

small and large categories. We use these cutoffs, because the 75th percentile of trades on

both Arbitrum and Polygon never exceeds $5K, with average trade sizes of $2K-$4K (see

Panel B of Table 1).

In Model (2), we add a dummy variable Large that equals 1 for large trades that exceed

the $1K cutoff, and zero otherwise. We also add its interaction term with BlockScaling,

BlockSc·Large, that captures the relative difference in slippage of large trades on blockchain

scaling solutions, relative to Ethereum. The coefficient on BlockScaling now captures the

relative difference in slippage of small trades between Ethereum and blockchain scaling so-

lutions, and is of main interest in our analysis. As Large is mechanically related to Size,

we omit Size from the vector of our control variables in Model (2).

We observe a positive and significant coefficient on Large in Model (2), suggesting that

large trades on Ethereum (i.e. those in excess of $1K) have on average 0.51 bp higher slippage

in the low-fee pool, compared to small trades. Importantly, we observe coefficients of different

signs on BlockScaling and BlockSc · Large. The negative coefficient on BlockScaling
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shows that slippage of small trades (less than $1K) on scaling solutions is by 4.6 bp lower,

compared to small trades on Ethereum. The positive coefficient on the interaction term,

BlockSc · Large, shows that large trades on scaling solutions have a significantly higher

slippage of 10.53 bp, relative to large trades on Ethereum. Hence, the overall positive

coefficient on BlockScaling in Model (1) is driven by significantly higher slippage for larger

trades. Once we condition on trade size, we observe significantly lower slippage for small

trades on Arbitrum and Polygon.

Model (3) reports similar results, using $5K cutoff to split trades into small and large

categories. Models (4) and (5) report results separately for Arbitrum and Polygon, using $1K

cutoff. Overall, we observe economically stronger effect for Arbitrum, most likely because

Arbitrum pools are more liquid and have higher TVL, compared to Polygon (see Table 1).

All results also hold for the high-fee pool (Panel C), except that the coefficient on Polygon

is no longer significant. Indeed, ETH/USDC 0.3% pool on Polygon has the lowest trading

volume and TVL, such that we do not see any improvement in slippage for the high-fee pool

on Polygon. However, this is in line with theoretical predictions of Lehar et al. (2022) that

all liquidity should consolidate on the low-fee pool in presence of low gas fees.

Overall, our findings in this section strongly support our Hypothesis 3 that small trades

on scaling solutions have significantly lower slippage, relative to small trades on Ethereum.

Importantly, the total execution cost of small trades is further diminished by low gas fees

on Arbitrum and Polygon. In contrast, large trades have significantly lower slippage on

Ethereum due to its larger liquidity (higher TVL). Whereas gas fees are higher on Ethereum,

they are not of first-order importance for large trades, because they represent a fixed cost.

Thus, the effect of lower slippage outweighs the effect of higher gas fees for large trades on

Ethereum.
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6 Alternative explanations

In this section, we address potential alternative explanations of our results. Indeed, it could

be that higher liquidity concentration on scaling solutions is driven not necessarily by higher

repositioning activity, but is an equilibrium outcome of liquidity provision. Hasbrouck et al.

(2023) model equilibrium liquidity provision for any price range on Uniswap v3. Specifically,

their Proposition 3.1 shows that equilibrium liquidity provision in a given interval increases

in the expected fee revenues and in the ex-fee return to liquidity providers from holding a

dynamic portfolio of two assets (e.g. ETH/USDC), Ri
P&L

. The ex-fee return to liquidity

providers is driven not only by fluctuations in ETH/USDC price, but also by changes in

the quantity of ETH and USDC in a given price range, i.e. Ri
P&L

is decreasing in adverse

selection.

Importantly, this equilibrium outcome is most likely different across Ethereum and scaling

solutions due to differences in the distribution of expected trade sizes and trading volume.

Fee levels (0.05% or 0.3%) are fixed on Uniswap v3 and remain the same across all three

chains. In absence of repositioning and assuming that arbitrageurs are not constrained in

their capital, the ex-fee return to LPs should be the same across all chains (for any given

amount of trading volume in a price interval).40 However, the expected trading volume

and trade sizes differ across Ethereum and scaling solutions due to differences in underlying

security of chains, potential network effects etc. Given overall smaller expected trade sizes on

Arbitrum and Polygon, it might be indeed optimal for LPs to concentrate liquidity around

the current tick range on scaling solutions. Liquidity positions that lie further away from the

current tick range are less likely to be active (similar to limit orders that are less likely to

be executed if they are posted further away from the best bid/ask in the limit order book).

40Proposition 4.8 of Hasbrouck et al. (2023) shows that the ex-fee return to LPs is comparable to holding a
covered call position, i.e. holding ETH and shorting an ETH/USDC call option against that ETH position. If
the ETH/USDC price is following geometric Brownian motion, Black-Scholes formula for option valuation can
be applied. Assuming perfect arbitrage, volatility of ETH/USDC should be the same across all chains. The
remaining parameters, such as strike price, interest rate and option maturity are the same by construction.
Then, the ex-fee return to LPs should be equal across chains, holding trading volume constant.
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In contrast, liquidity positions that are further away from the current tick range are more

likely to become active on Ethereum due to its larger expected trade sizes.

Whereas equilibrium liquidity distributions most likely differ across Ethereum and scaling

solutions, our aim is to show that repositioning activity indeed plays an important role for

aggregate liquidity concentration on DEXs. To identify the effect of repositioning activity

even further, we use an exogenous shock within Arbitrum chain, related to the airdrop of

Arbitrum token on March 23, 2023. Arguably, if a shock to repositioning activity occurs

within the same chain, all other underlying parameters that potentially affect the distribution

of the trade size (e.g., chain security), remain constant. In this case, changes in liquidity

concentration can indeed be mostly attributed to an increase in repositioning activity of

liquidity providers.

During the airdrop, around 1.162B of Arbitrum’s native token, ARB, was distributed

to users of the platform and another 113M to Decentralized Autonomous Organizations

(DAOs). Out of 113M, Uniswap was entitled to 4.3M, which makes it the third largest DAO

recipient after Treasure and GMX.41 Uniswap, alongside other DEXs, incentivized their

liquidity pools on Arbitrum by distributing ARB tokens to LPs as “rewards”. Importantly,

Uniswap’s rewards to LPs were linked not only to the aggregate liquidity provided, but also

to the concentration of LP’s positions around the market price. The suggested formula for

computation of a reward score is increasing in the fees earned by each LP position, relative

to total fees earned by all LPs in the pool.42. Hence, it incentivizes LPs to stay active and

re-position in the current price range to maximize their rewards.

Overall, we expect that an increase in repositioning intensity on Arbitrum after the

airdrop should have a more pronounced effect on aggregate liquidity concentration, relative to

the pre-airdrop sample. To test this prediction, we re-estimate our IV regressions, separately

before and after the airdrop, in Table 10.

41See https://docs.arbitrum.foundation/airdrop-eligibility-distribution for details of ARB distribution.

42See https://gov.uniswap.org/t/rfc-gamma-strategies-distribute-at-least-1-3-of-arb-airdrop-as-liquidity-
incentives/21345/2
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[Insert Table 10 approximately here]

Models (1)-(3) report results for the pre-airdrop sample and Models (4)-(6) for the post-

airdrop sample, using Arbitrum as our instrument variable. As expected, we observe a

significant increase in repositioning intensity on Arbitrum after the airdrop. Before the

airdrop, repositioning intensity for the low-fee pool on Arbitrum is 22% higher, relative to

Ethereum (Model 1 of Panel A). After the Airdrop, this difference increases to 35% (Model

4). Importantly, the effect of repositioning intensity on aggregate liquidity concentration

increases from 4% before the airdrop to around 29% afterwards (Models 2 and 5). We observe

an even stronger increase in the effect of repositioning precision on liquidity concentration,

from 5% before the airdrop to 68% afterwards.43 All our findings also hold for the high-fee

pool (Panel B).

To sum up, whereas we cannot possibly rule out differences in equilibrium liquidity

distributions across Ethereum and blockchain scaling solutions, an exogenous shock to repo-

sitioning activity within Arbitrum helps us further identify the causal effect of repositioning

activity on aggregate liquidity concentration on DEXs.

7 Conclusions

Liquidity providers (LPs) on decentralized exchanges (DEXs) can protect themselves from

adverse selection by either setting a wide price range for their position or by updating it more

frequently, in response to changes in the market price. However, updating is costly, because

every repositioning from an LP requires the payment of a fixed cost (a gas fee). Blockchain

scaling solutions, such as Arbitrum and Polygon, allow for more frequent updating by LPs

due to their lower gas fees. With more frequent updating, LPs are better able to track the

market price and protect themselves from adverse selection. Thus, for the same amount of

43To conserve space, we do not report first-stage IV regressions for repositioning precision, but we confirm
that it increases significantly after the airdrop (available upon request).
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capital deposited in the pool, they can maximize their rewards by making their positions

more concentrated around the market price. In this paper, we use the launch of Uniswap v3

on Arbitrum and Polygon as our instrument to show that higher repositioning intensity and

precision of LPs leads to higher aggregate liquidity concentration around the market price.

Higher liquidity concentration around the market price is important, because it reduces

slippage, especially for small trades. Indeed, we find that slippage of small trades (up

to $5K) is significantly smaller on blockchain scaling solutions, relative to the incumbent

Ethereum. Thus, liquidity pools on scaling solutions provide better execution terms for small

(retail) traders. However, these benefits come at a cost of lower security on scaling solutions,

relative to Ethereum. Due to its higher security, Ethereum attracts larger liquidity providers,

resulting in higher TVL. Consequently, slippage of large trades is lower on Ethereum as its

liquidity pools are deeper. High gas fees on Ethereum are of lower importance for large

traders due to their fixed-cost nature. Thus, similar to a separating equilibrium, we observe

that large traders and liquidity providers are attracted to Ethereum, whereas small (e.g.

retail) traders and liquidity providers are better off using blockchain scaling solutions.
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Figures

Figure 1: Binance BTC/USDT limit order book snapshot. Bid side (in green) represents the

cumulative BTC quantity of buy limit orders, and ask side (in red) represents the cumulative BTC quantity

of sell limit orders. The displayed BTC market price in USDT (vertical line) is the mid price, which is the

average of the best bid price and the best ask price.

Source: Binance.
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Figure 2: Monthly traded volume on CEXs and DEXs. Panel A of this figure shows monthly

traded volume on CEXs (in $) fromMay 2017 until April 2023, showing the market shares separately

for each exchange. Panel B shows monthly traded volume on DEXs (in $) from June 2020, after

the launch of Uniswap v2, until April 2023.

Panel A: CEXs volume

Panel B: DEXs volume

Source: The Block, https://www.theblock.co/data.
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Figure 3: Protecting from adverse selection by LPs. Panel A shows a scenario when an LP’s position

is adversely selected by an arbitrageur. We assume that ETH price (in USDC) experiences a permanent

increase from 1,000 to 2,000. The arbitrageur’s buy trade moves the market price to the new level, depleting

all ETH reserves in the LP’s position and leaving him only with USDC. The LP experiences an adverse

selection loss of $500K, compared to the scenario, in which he would just hold his initial portfolio of ETH

and USDC. Panel B shows that the LP could partially protect himself from adverse selection by redistributing

the same amount of capital on a wider price range. Thus, his position would be less concentrated around the

market price. Posting on a wider price range would reduce LP’s losses to $300K, because average execution

price for his ETH reserves would be higher, compared to Panel A. In contrast, Panel C assumes that the

LP continuously monitors the market and is able to update his position even before the arbirtrageur’s trade

arrives. In this scenario, the LP is able to fully avoid adverse selection loss and makes a profit of $500K.

Panel A: LP is adversely selected

Panel B: Protecting by setting a wider initial price range
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Panel C: Protecting by updating the position
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Figure 4: Average range liquidity, scaled by TVL: ETH/USDC 0.05%. This figure shows average

liquidity within each price range, scaled by TVL, for ETH/USDC 0.05% pool, separately for Ethereum,

Arbitrum and Polygon. Averages for each price range are constructed from hourly liquidity snapshots over

our sample period January 1, 2022 - June 30, 2023. The dotted vertical line shows the average market price

over our sample period.
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Tables

Table 1: Summary statistics: volume, TVL and trade size. Panel A of this table presents average

24-hour volume (in $M) and average total value locked (TVL) (in $M) on Uniswap v3 across Ethereum,

Arbitrum and Polygon for two liquidity pools: ETH/USDC 0.05% and ETH/USDC 0.3%. Panel B reports

summary statistics of trade sizes. Panel C reports the average daily numbers of trades, purchases and sales

as well as the average time (in seconds) between two trades (delta). Our sample period ranges from January

1, 2022 to June 30, 2023. Appendix E provides a detailed description of all variable definitions.

Panel A: Volume and TVL

Pool Volume 24h ($M) TVL ($M) Volume/TVL

ETH/USDC 0.05%

Ethereum 513.73 201.19 2.55

Arbitrum 51.93 18.04 2.88

Polygon 29.03 10.26 2.83

ETH/USDC 0.3%

Ethereum 57.83 176.59 0.33

Arbitrum 1.65 4.48 0.37

Polygon 0.95 1.89 0.50

Panel B: Trade size

Pool Mean ($K) SD 25% 50% 75%

ETH/USDC 0.05%

Ethereum 72.19 255.61 0.82 4.55 42.67

Arbitrum 4.12 10.10 0.06 0.96 4.64

Polygon 2.42 5.09 0.07 0.77 2.86

ETH/USDC 0.3%

Ethereum 116.19 241.02 1.31 30.00 144.65

Arbitrum 2.95 6.76 0.08 1.34 3.33

Polygon 1.74 3.37 0.38 0.88 1.83
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Panel C: Trade frequency

Pool Daily trades Daily buys Daily sells Delta (s)

ETH/USDC 0.05%

Ethereum 7130.90 3495.97 3634.93 12.14

Arbitrum 12668.05 6146.88 6521.17 6.83

Polygon 12048.61 5651.39 6397.23 7.18

ETH/USDC 0.3%

Ethereum 498.17 245.12 253.05 173.75

Arbitrum 560.95 285.41 275.53 154.31

Polygon 545.50 272.64 272.86 158.67

Table 2: Summary statistics: control variables. This table presents summary statistics for the

following control variables: the traded volume over the previous 24 hours, V olume (in $M); the realized

volatility of ETH/USD over the previous 24 hours, V olatility, (in %); and the 1-minute return of ETH/USD,

Return (in bp). V olatility and Return are based on a single time series for ETH/USD from Binance, which

is independent from Uniswap v3. Appendix E provides a detailed description of all variable definitions. Our

sample period ranges from January 1, 2022 to June 30, 2023.

Mean SD 25% 50% 75%

Volume 24h ($M)

ETH/USDC 0.05%

Ethereum 513.73 338.53 277.40 466.48 644.16

Arbitrum 51.93 49.65 17.54 33.15 70.16

Polygon 29.03 18.28 16.50 25.52 37.34

ETH/USDC 0.3%

Ethereum 57.83 62.88 17.31 41.96 76.64

Arbitrum 1.65 1.46 0.63 1.08 2.21

Polygon 0.95 0.94 0.30 0.71 1.28

Volatility 24h (%) 3.53 1.87 2.31 3.16 4.26

Return 1min (bp) 0.00 10.53 -3.87 0.00 3.80
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Table 3: Liquidity concentration. This table reports average levels of liquidity concentration across

Ethereum, Arbitrum and Polygon for two liquidity pools: ETH/USDC 0.05% and ETH/USDC 0.3%. We

define liquidity concentration within x% of the market price, as the ratio of market depth within x% of

pmkt, divided by TV L. Market depth within x% of pmkt is computed as the $ value of the liquidity between
pmkt

1+x% and pmkt · (1+x%). Appendix E provides a detailed description of all variable definitions. Column (1)

reports average levels of liquidity concentration within 1% of the market price. Columns (2) and (3) report

corresponding statistics for liquidity concentration within 2% and 10% of the market price, respectively. We

also report the difference between averages on Arbitrum and Ethereum (∆Arb−Eth) as well as Polygon and

Ethereum (∆Pol−Eth). T-statistics of the two-tailed t-test with the null-hypothesis of differences equaling

zero exceed 100. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Pool Liquidity concentration (%)

1% 2% 10%

ETH/USDC 0.05%

Ethereum 5.43 10.16 35.28

Arbitrum 6.35 11.85 39.64

∆Arb− Eth 0.93 *** 1.70 *** 4.36 ***

Polygon 6.61 12.45 42.44

∆Pol − Eth 1.18 *** 2.29 *** 7.16 ***

ETH/USDC 0.3%

Ethereum 2.80 5.53 24.20

Arbitrum 3.81 7.39 29.56

∆Arb− Eth 1.01 *** 1.85 *** 5.36 ***

Polygon 5.24 10.20 38.74

∆Pol − Eth 2.44 *** 4.67 *** 14.54 ***
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Table 4: Liquidity provision and repositioning intensity. This table reports average levels of liq-

uidity provision across Ethereum, Arbitrum and Polygon for two liquidity pools: ETH/USDC 0.05% and

ETH/USDC 0.3%. We report the average daily number of mints (column 1); the average duration between

two mints (in minutes) (column 2); the average daily minted value (in $M) (column 3); the average daily

number of burns (column 4); the average duration between two burns (in minutes) (column 5); the average

daily burned value (in $M) (column 6); and the average repositioning intensity over 5-minute intervals (in

%) (column 7). We define repositioning as a burn followed by a mint in the same pool by the same liquidity

provider within next 5 minutes. We measure repositioning intensity as the value of repositioning mints (in

$) over a 5-minute interval divided by the total value minted (in $) over the same interval. Appendix E

provides a detailed description of all variable definitions. We also report the difference between averages on

Arbitrum and Ethereum (∆Arb−Eth) as well as Polygon and Ethereum (∆Pol−Eth). T-statistics of the

two-tailed t-test with the null-hypothesis of difference equaling zero are reported in parentheses.

Pool Mints Delta Minted Burns Delta Burned Intensity

(#/day) (min) ($M/day) (#/day) (min) ($M/day) (%)

ETH/USDC 0.05%

Ethereum 81.21 17.73 41.19 61.54 23.40 39.90 15.89

Arbitrum 315.27 4.57 11.75 237.83 6.05 11.60 40.64

∆Arb− Eth 234.06 -13.17 -29.44 176.29 -17.34 -28.31 24.75

(137.45) (-29.00) (106.40) (-28.19) (96.64)

Polygon 546.64 2.63 2.95 371.46 3.88 2.82 35.90

∆Pol − Eth 465.43 -15.10 -38.24 309.92 -19.52 -37.08 20.01

(246.81) (-40.04) (205.67) (-39.32) (84.01)

ETH/USDC 0.3%

Ethereum 74.18 19.41 6.53 32.65 44.10 5.42 7.29

Arbitrum 69.92 20.59 0.26 31.66 45.48 0.24 17.10

∆Arb− Eth -4.25 1.18 -6.27 -0.99 1.38 -5.18 9.81

(-4.69) (-26.33) (-2.45) (-22.76) (36.14)

Polygon 72.94 19.74 0.30 46.88 30.72 0.28 24.78

∆Pol − Eth -1.24 0.33 -6.23 14.22 -13.38 -5.14 17.49

(-1.67) (-26.16) (30.70) (-22.58) (60.39)
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Table 5: Repositioning intensity and liquidity concentration: IV regressions. This table presents

results of instrumental variable regressions that test causal effect of repositioning intensity of LPs, Intensity,

on aggregate liquidity concentration around the market price, Conc. Panel A reports results for the low-fee

pool (ETH/USDC 0.05%), and Panel B for the high-fee pool (ETH/USDC 0.3%). Arbitrum (Polygon)

takes value of 1 for Arbitrum (Polygon) pools, and zero for Ethereum pools. Model (1) reports the results

for the first-stage regression, with repositioning intensity of LPs, Intensity, as the dependent variable and

Arbitrum as the main explanatory variable, which is used as an instrument for the endogenous Intensity.

Model (2) reports results for the second-stage regression, with liquidity concentration within 2% of the market

price, Conc, as the dependent variable. We estimate liquidity concentration at the end of every 5-minute

interval and the repositioning intensity over every 5-minute interval. The set of instruments consists of all

explanatory variables, except that Intensity is replaced with Arbitrum. The table shows corresponding

results for Polygon pools in Models (3) and (4), with Polygon used as an instrument for the endogenous

Intensity. Models (5) and (6) use BlockScaling that takes value of 1 for both Arbitrum and Polygon pools,

and zero for the corresponding Ethereum pool, as an instrument. The vector of control variables consists

of V olume, V olatility and |Return|. See Appendix E for a detailed description of variable definitions. All

regressions include hour- and day-fixed effects, with standard errors clustered at the day level. T-statistics

of the two-tailed t-test with the null-hypothesis of a coefficient equaling zero are reported in parentheses.

***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: ETH/USDC 0.05%

Arbitrum Polygon BlockScaling

Int Conc Int Conc Int Conc

2% 2% 2%

(1) (2) (3) (4) (5) (6)

Arbitrum 0.24 ***

(35.55)

Polygon 0.20 ***

(33.60)

BlockScaling 0.21 ***

(43.78)

Intensity 0.09 *** 0.11 *** 0.11 ***

(59.67) (66.04) (69.65)

V olume 0.00 0.01 *** -0.01 *** 0.01 *** 0.01 *** 0.01 ***

(1.27) (48.33) (-3.42) (59.75) (3.85) (57.25)

V olatility -0.65 -1.52 *** 0.45 -1.57 *** -1.35 *** -1.41 ***

(-1.19) (-41.02) (1.02) (-48.61) (-2.88) (-51.38)

|Return| 23.82 *** -2.98 *** 18.11 *** -2.45 *** 22.45 *** -3.09 ***

(16.86) (-27.79) (17.13) (-29.57) (19.14) (-38.43)

Observations 114,817 114,817 148,416 148,416 221,268 221,268

HourFE Yes Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes Yes
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Panel B: ETH/USDC 0.3%

Arbitrum Polygon BlockScaling

Int Conc Int Conc Int Conc

2% 2% 2%

(1) (2) (3) (4) (5) (6)

Arbitrum 0.12 ***

(12.57)

Polygon 0.16 ***

(28.67)

BlockScaling 0.13 ***

(22.40)

Intensity 0.08 *** 0.22 *** 0.15 ***

(29.03) (40.97) (43.08)

V olume -0.14 *** 0.06 *** -0.00 0.04 *** 0.01 0.07 ***

(-3.98) (42.50) (-0.19) (17.74) (0.53) (46.28)

V olatility 2.97 *** -1.22 *** 0.29 -1.08 *** 0.32 -1.53 ***

(4.86) (-39.04) (0.70) (-15.60) (0.70) (-35.22)

|Return| 9.15 *** -0.96 *** 17.87 *** -4.15 *** 17.49 *** -2.78 ***

(8.47) (-11.58) (12.54) (-18.77) (13.93) (-20.79)

Observations 53,145 53,145 57,472 57,472 81,810 81,810

HourFE Yes Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes Yes
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Table 6: Repositioning intensity and liquidity concentration: robustness checks. This table

presents robustness checks for our instrumental variable regressions. Panel A reports results for the low-fee

pool (ETH/USDC 0.05%), and Panel B for the high-fee pool (ETH/USDC 0.3%). All models report results

of the second-stage IV regressions with BlockScaling as an instrument for Intensity, similar to Model (6) in

Table 5. BlockScaling takes value of 1 for both Arbitrum and Polygon pools, and zero for the corresponding

Ethereum pool. Models (1) and (2) use liquidity concentration within 1% and within 10% of the current

market price as the dependent variable, respectively. Model (3) uses an alternative measure for repositioning

intensity, IntensFreq, defined as the ratio of the number of repositioning mints to the total number of

mints within a 5-minute interval. Model (4) uses an alternative measure of Intensity, based on the 1-minute

repositioning mints. In this analysis, we classify repositioning mints as those that are preceded by burns of

the same LP within the previous minute. Model (5) uses 10-minute intervals for estimation of repositioning

intensity and liquidity concentration, instead of 5-minute intervals. The vector of control variables consists

of V olume, V olatility and |Return|. See Appendix E for a detailed description of variable definitions. All

regressions include hour- and day-fixed effects, with standard errors clustered at the day level. T-statistics

of the two-tailed t-test with the null-hypothesis of a coefficient equaling zero are reported in parentheses.

***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: ETH/USDC 0.05%

Conc Conc IntFreq Repostn Aggr

1% 10% 1-min 10-min

(1) (2) (3) (4) (5)

Intensity 0.06 *** 0.34 *** 0.16 *** 0.10 ***

(69.57) (80.57) (71.87) (63.62)

IntensFreq 0.24 ***

(31.90)

V olume 0.00 *** 0.02 *** 0.01 *** 0.01 *** 0.01 ***

(57.69) (47.80) (33.37) (69.84) (53.59)

V olatility -0.84 *** -2.82 *** -1.35 *** -1.44 *** -1.39 ***

(-52.21) (-36.63) (-26.90) (-51.67) (-45.54)

|Return| -1.85 *** -8.68 *** -6.39 *** -3.71 *** -2.01 ***

(-39.32) (-37.14) (-27.97) (-38.80) (-32.58)

Observations 221,268 221,268 214,875 221,267 149,871

HourFE Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes
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Panel B: ETH/USDC 0.3%

Conc Conc IntFreq Repostn Aggr

1% 10% 1-min 10-min

(1) (2) (3) (4) (5)

Intensity 0.08 *** 0.42 *** 0.21 *** 0.15 ***

(42.66) (42.56) (44.66) (40.52)

IntensFreq 0.17 ***

(37.48)

V olume 0.04 *** 0.21 *** 0.07 *** 0.07 *** 0.07 ***

(43.93) (49.60) (40.42) (54.16) (44.07)

V olatility -0.80 *** -4.46 *** -1.52 *** -1.49 *** -1.56 ***

(-33.59) (-36.66) (-31.26) (-35.58) (-32.65)

|Return| -1.51 *** -7.55 *** -3.33 *** -3.59 *** -2.11 ***

(-20.74) (-20.20) (-20.62) (-21.11) (-20.42)

Observations 81,810 81,810 81,133 81,810 67,874

HourFE Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes
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Table 7: Repositioning precision This table reports average levels of position gap (%), position length

(%) and position precision (%) across Ethereum, Arbitrum and Polygon for two liquidity pools: ETH/USDC

0.05% and ETH/USDC 0.3%. We define repositioning gap, Gap, as the average gap between the mid price

of repositioning mints, pmid, and pmkt, computed as
∣∣∣ pmid

pmkt
− 1

∣∣∣. pmid is computed as
√
plower · pupper. We

define a repositioning mint as a mint, preceded by a burn in the same pool by the same liquidity provider

within previous 5 minutes. Repositioning length, Length, is the average range length of repositioning mints,

computed as
|pupper−plower|

pmid
. Repositioning precision, Precision, is the average precision of repositioning

mints, computed and scaled as 1 − 1.0001
−1

Gap·Length . Appendix E provides a detailed description of all

variable definitions. Column (1) reports average levels of repositioning gap. Columns (2) and (3) report

corresponding statistics for repositioning length and repositioning precision, respectively. We also report the

difference between averages on Arbitrum and Ethereum (∆Arb − Eth) as well as Polygon and Ethereum

(∆Pol − Eth). T-statistics of the two-tailed t-test with the null-hypothesis of difference equaling zero are

reported in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively.

Pool Gap (%) Length (%) Precision (%)

ETH/USDC 0.05%

Ethereum 1.86 18.07 50.77

Arbitrum 0.85 10.69 70.89

∆Arb− Eth -1.01 *** -7.38 *** 20.12 ***

(-49.01) (-63.20) (53.98)

Polygon 1.09 12.91 68.60

∆Pol − Eth -0.77 *** -5.16 *** 17.83 ***

(-32.70) (-46.43) (45.23)

ETH/USDC 0.3%

Ethereum 3.41 29.28 20.02

Arbitrum 2.09 15.04 36.63

∆Arb− Eth -1.32 *** -14.24 *** 16.61 ***

(-17.14) (-21.76) (20.50)

Polygon 2.44 15.11 42.12

∆Pol − Eth -0.97 *** -14.17 *** 22.10 ***

(-12.94) (-27.87) (28.70)
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Table 8: Repositioning precision and liquidity concentration: IV regressions.This table presents

results of instrumental variable regressions that test causal effect of repositioning precision of LPs on liquidity

concentration around the market price. We use three measures of repositioning precision: Gap, Length and

Precision. See Appendix E for a detailed description of variable definitions. Panel A reports results for

the low-fee pool (ETH/USDC 0.05%), and Panel B for the high-fee pool (ETH/USDC 0.3%). Model (1)

reports the results of the first-stage IV regression with Gap as the dependent variable. Model (2) reports

the results of the second-stage regression with liquidity concentration within 2% as the dependent variable.

Blockscaling is used as an instrument for the endogenous repositioning precision (i.e. Gap). Models (3)

and (4) present corresponding results for Length as a measure of repositioning precision. Models (5) and (6)

present results for Precision. The vector of control variables consists of V olume, V olatility and |Return|.
All regressions include hour- and day-fixed effects, with standard errors clustered at the day level. T-statistics

of the two-tailed t-test with the null-hypothesis of a coefficient equaling zero are reported in parentheses.

***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: ETH/USDC 0.05%

Gap Conc Length Conc Precision Conc

2% 2% 2%

(1) (2) (3) (4) (5) (6)

BlockScaling -0.01 *** -0.05 *** 0.12 ***

(-9.26) (-13.83) (11.85)

Gap -4.15 ***

(-15.82)

Length -0.47 ***

(-27.70)

Precision 0.18 ***

(23.28)

V olume -0.00 *** 0.00 *** -0.00 ** 0.01 *** 0.02 *** 0.00 ***

(-5.45) (7.53) (-2.56) (30.86) (3.76) (16.52)

V olatility 0.26 *** -0.46 *** 0.87 *** -1.13 *** -4.65 *** -0.69 ***

(6.02) (-4.15) (4.16) (-21.77) (-6.21) (-10.96)

|Return| -0.41 *** -2.28 *** -4.60 *** -2.84 *** 6.71 *** -1.77 ***

(-8.99) (-13.45) (-13.27) (-21.15) (7.66) (-16.04)

Observations 102,625 102,625 102,625 102,625 102,625 102,625

HourFE Yes Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes Yes
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Panel B: ETH/USDC 0.3%

Gap Conc Length Conc Precision Conc

2% 2% 2%

(1) (2) (3) (4) (5) (6)

BlockScaling -0.01 *** -0.11 *** 0.12 ***

(-5.01) (-13.11) (8.84)

Gap -3.05 ***

(-7.05)

Length -0.16 ***

(-17.55)

Precision 0.15 ***

(15.52)

V olume -0.01 *** 0.04 *** -0.04 ** 0.06 *** 0.15 *** 0.04 ***

(-3.31) (5.73) (-2.10) (23.71) (5.42) (11.82)

V olatility 0.27 *** -0.74 *** 1.36 *** -1.34 *** -5.42 *** -0.72 ***

(2.84) (-3.09) (3.13) (-17.31) (-6.55) (-6.48)

|Return| -0.25 ** -0.80 *** -3.53 *** -0.62 *** 7.60 *** -1.21 ***

(-2.58) (-2.74) (-6.67) (-5.88) (7.43) (-7.36)

Observations 15,173 15,174 15,173 15,174 15,173 15,174

HourFE Yes Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes Yes
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Table 9: Slippage: summary statistics and multivariate analysis. Panel A of this table presents

summary statistics for slippage, Slippage (in bp), on Uniswap v3 across Ethereum, Arbitrum and Polygon

for two liquidity pools: ETH/USDC 0.05% and ETH/USDC 0.3%. We compute Slippage for hypothetical

trades of sizes [$100, $500, $1K, $5K, $10K, $50K, $100K] for every minute in our sample period (January 1,

2022 - June 30, 2023). Panels B and C present the results of OLS regressions with slippage, Slippage (in bp),

as the dependent variable. Model (1) reports the results for the total sample, with BlockScaling equal to

1 for hypothetical trades on Arbitrum and Polygon, and zero otherwise. Trades on Ethereum represent the

benchmark sample. Models (2) and (3) report results, conditioning on the trade size. Specifically, we define

Large equal to 1 if a trade exceeds $1K (Model 2) or $5K (Model 3), and zero otherwise. Models (4) and

(5) report results for the benchmark Model (2), separately for Arbitrum and Polygon. The vector of control

variables consists of Size, Buy, V olume, V olatility, |Return|. See Appendix E for a detailed description

of variable definitions. All regressions include hour- and date-fixed effects, with standard errors clustered

at the day level. T-statistics of the two-tailed t-test with the null-hypothesis of a coefficient equaling zero

are reported in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively.

Panel A: Summary statistics

Mean SD 25% 50% 75%

Slippage (bp)

ETH/USDC 0.05%

Ethereum 0.30 0.61 0.01 0.05 0.37

Arbitrum 8.80 27.81 0.07 0.60 4.25

Polygon 4.25 8.05 0.09 0.73 5.92

ETH/USDC 0.3%

Ethereum 0.55 0.90 0.01 0.11 0.85

Arbitrum 23.25 51.95 0.35 2.62 20.63

Polygon 34.24 62.18 0.72 5.40 38.23
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Panel B: ETH/USDC 0.05%

BlockScaling Arbitrum Polygon

Total Large
> $1K

Large
> $5K

Large
> $1K

Large
> $1K

(1) (2) (3) (4) (5)

BlockScaling 1.41 *** -4.60 *** -4.32 ***

(3.18) (-9.10) (-8.65)

Arbitrum -6.41 ***

(-8.09)

Polygon -1.62 ***

(-8.73)

BlockSc · Large 10.53 *** 13.37 *** 14.37 *** 6.67 ***

(19.79) (19.79) (15.12) (42.59)

Large 0.51 *** 0.65 *** 0.51 *** 0.51 ***

(37.00) (37.00) (37.00) (37.00)

Size 0.19 ***

(20.63)

Buy -0.00 -0.00 -0.00 0.01 -0.01 ***

(-0.22) (-0.22) (-0.22) (0.27) (-3.42)

V olume -0.01 *** -0.01 *** -0.01 *** -0.01 *** -0.00 ***

(-9.06) (-9.06) (-9.06) (-8.02) (-9.61)

V olatility 0.86 *** 0.86 *** 0.86 *** 1.38 *** 0.41 ***

(8.96) (8.96) (8.96) (7.68) (9.33)

|Return| 0.48 *** 0.48 *** 0.48 *** 0.39 *** 0.33 ***

(9.26) (9.26) (9.26) (5.83) (10.60)

R2 0.28 0.20 0.24 0.24 0.36

Observations 6,603,702 6,603,702 6,603,702 4,402,468 4,402,468

HourFE Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes
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Panel C: ETH/USDC 0.3%

BlockScaling Arbitrum Polygon

Total Large
> $1K

Large
> $5K

Large
> $1K

Large
> $1K

(1) (2) (3) (4) (5)

BlockScaling 21.61 *** -5.78 *** -4.48 ***

(31.41) (-8.00) (-6.29)

Arbitrum -9.74 ***

(-12.45)

Polygon -1.07

(-1.20)

BlockSc · Large 47.94 *** 60.89 *** 38.50 *** 57.38 ***

(50.21) (50.17) (29.78) (43.93)

Large 0.94 *** 1.19 *** 0.94 *** 0.94 ***

(68.44) (68.45) (68.44) (68.44)

Size 0.81 ***

(51.08)

Buy 0.18 * 0.18 * 0.18 * 0.29 *** -0.03

(1.68) (1.68) (1.68) (3.22) (-0.25)

V olume -0.12 *** -0.12 *** -0.12 *** -0.19 *** -0.03 **

(-9.32) (-9.32) (-9.32) (-12.40) (-2.09)

V olatility 2.11 *** 2.11 *** 2.11 *** 3.20 *** 1.27 ***

(10.90) (10.90) (10.90) (11.57) (4.50)

|Return| 1.00 *** 1.00 *** 1.00 *** 0.51 *** 0.98 ***

(6.63) (6.63) (6.63) (2.89) (8.19)

R2 0.49 0.30 0.41 0.34 0.36

Observations 6,603,702 6,603,702 6,603,702 4,402,468 4,402,468

HourFE Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes
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Table 10: Repositioning and liquidity concentration: Arbitrum airdrop. This table presents

results of instrumental variable regressions that test causal effect of repositioning intensity and precision,

separately before and after the airdrop of ARB token on March 23, 2023. Panel A reports results for the

low-fee pool (ETH/USDC 0.05%), and Panel B for the high-fee pool (ETH/USDC 0.3%). Models (1)-(3)

report results for the pre-airdrop sample, and Models (4)-(6) for the post-airdrop sample. Models (1) and

(4) report the results for the first-stage regression, with repositioning intensity of LPs, Intensity, as the

dependent variable and Arbitrum as the main explanatory variable, which is used as an instrument for

the endogenous Intensity. Arbitrum takes value of 1 for Arbitrum pools, and zero for Ethereum pools.

Models (2) and (5) report results for the second-stage regression, with liquidity concentration within 2% of

the market price, Conc, as the dependent variable. We estimate liquidity concentration at the end of every

5-minute interval and the repositioning intensity over the previous 5-minute interval. The set of instruments

consists of all explanatory variables, except that Intensity is replaced with Arbitrum. Models (3) and (6)

report results for the second-stage regressions, with Arbitrum used as an instrument for the endogenous

Precision. The vector of control variables consists of V olume, V olatility and |Return|. See Appendix E

for a detailed description of variable definitions. All regressions include hour- and day-fixed effects, with

standard errors clustered at the day level. T-statistics of the two-tailed t-test with the null-hypothesis of a

coefficient equaling zero are reported in parentheses. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively.

Panel A: ETH/USDC 0.05%

Before Airdrop After Airdrop

Int Conc Conc Int Conc Conc

2% 2% 2% 2%

(1) (2) (3) (4) (5) (6)

Arbitrum 0.22 *** 0.35 ***

(31.23) (17.93)

Intensity 0.04 *** 0.29 ***

(29.71) (35.37)

Precision 0.05 *** 0.68 ***

(13.90) (7.11)

V olume 0.00 0.01 *** 0.01 *** -0.03 ** 0.01 *** -0.00

(1.17) (53.87) (28.77) (-2.59) (6.59) (-0.53)

V olatility -0.90 -1.30 *** -1.22 *** 5.74 *** -3.34 *** 3.07 **

(-1.56) (-47.41) (-27.48) (3.28) (-12.26) (2.05)

|Return| 24.24 *** -1.57 *** -0.64 *** 20.11 *** -6.55 *** -6.67 ***

(15.58) (-21.40) (-9.10) (6.88) (-10.33) (-4.74)

Observations 87,698 87,698 33,849 27,119 27,119 14,138

HourFE Yes Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes Yes
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Panel B: ETH/USDC 0.3%

Before Airdrop After Airdrop

Int Conc Conc Int Conc Conc

2% 2% 2% 2%

(1) (2) (3) (4) (5) (6)

Arbitrum 0.07 *** 0.12 ***

(2.74) (12.25)

Intensity 0.07 *** 0.65 ***

(27.16) (3.69)

Precision 0.06 *** 0.31 **

(7.04) (2.37)

V olume -0.15 *** 0.06 *** 0.04 *** 0.20 -0.08 -0.04

(-4.08) (44.17) (11.10) (1.57) (-0.92) (-0.54)

V olatility 3.09 *** -1.15 *** -0.63 *** -1.03 -0.59 0.00

(4.93) (-41.39) (-7.54) (-0.28) (-0.31) (.)

|Return| 8.90 *** -0.81 *** -0.34 *** 15.63 *** -10.37 ** 0.79

(8.10) (-11.25) (-3.71) (3.81) (-2.57) (0.50)

Observations 49,943 49,943 6,604 3,202 3,202 549

HourFE Yes Yes Yes Yes Yes Yes

DateFE Yes Yes Yes Yes Yes Yes
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Appendix A

Estimating gas fees

Any transaction on a blockchain requires the payment of gas fees, which are used to com-

pensate validators for their work in verifying transactions and securing the network.

Gas fees are computed with the quantity of gas units required, which depends on the

transaction. For example, a trade on Uniswap v3 (Ethereum) requires on average 120K gas

units.

The price of one gas unit, the gas price, varies over our sample period, as shown in Panel

A of Figure A1. Panel B shows the gas fees to pay for a hypothetical trade on Uniswap v3

(Ethereum) that requires 120K gas units. These fees vary from as little as $1.30 in October

2022 to $160 during the period of Terra collapse in early May 2022. On average, a trade

that requires 120K gas units on Uniswap v3 (Ethereum) costs $14 in gas fees in 2022.
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Figure A1: Gas price and gas fees on Ethereum. Panel A of this figure shows historical gas price

on Ethereum over 2022, downloaded from Etherscan. Panel B shows gas fees for a trade on Uniswap v3

(Ethereum), assuming that it requires on average 120K gas units.

Panel A

Panel B
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Appendix B

Trading mechanics on Uniswap v2 and Uniswap v3

Uniswap v2. Uniswap v2 is a constant product market maker (CPMM), which is a widely

adopted subclass of automated market makers (AMMs). The price curve, or so-called bond-

ing curve, is defined as:

x · y = k (2)

where x is the current quantity of token X, the base token (e.g., BTC for BTC/USDT

pair), y is the current quantity of token Y, the quote token (e.g., USDT for BTC/USDT pair)

and k is the pool’s constant, showing the total liquidity available in the pool. In absence of

mints and burns, pool’s constant k has to preserve its value. For example, a trade (or swap)

that buys BTC with USDT will remove △x of BTC from the pool and add △y of USDT to

the pool. Denote the new amount of BTC in the pool after the trade as x′, i.e. x′ = x+△x,

and the new amount of USDT as y′, i.e. y′ = y +△y, with △x < 0 and △y > 0. CPMM

requires k to be the same before and after the trade:

x · y = (x+△x)(y +△y) = k (3)

Therefore, the product between the reserves of the pool’s two tokens is constant, provided

there is no changes to total liquidity in the pool. Figure A2 illustrates this trade as a

transition along the price curve from state c to state b. Note that the convexity of the curve

causes the trader to receive less BTC than the actual BTC value of the USDT added to the

pool, i.e. slippage of the trade is determined by convexity of the price curve.

[Insert Figure A2 approximately here]

The market price in Uniswap v2 pools is determined by the ratio of the current quantities

of two tokens in the pool:
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pmkt =
y

x
(4)

which shows the market price of token X (BTC) in units of token Y (USDT). After the

trade, as in example above, price of BTC increases to p′mkt =
y′

x′ , because removing some of

BTC from the pool makes it relatively scarce. In contrast, adding USDT to the pool makes

it a relatively abundant asset, such that it becomes relatively cheaper.

In Uniswap v2, LPs are required to deposit their liquidity in a 50-50 ratio, i.e. they

deposit both tokens in equivalent quantities. If liquidity providers add liquidity to the pool,

the pool size increases, i.e. the pool’s constant k increases. The larger the pool size the lower

the slippage of a given trade. However, trading fees are then shared between a larger number

of LPs. Recent studies by Capponi and Jia (2021), Lehar and Parlour (2021), and Foley

et al. (2023) discuss the economics of Uniswap v2 in more detail. Specifically, they show

that LPs face a trade-off between the amount of fees earned from liquidity providing and

adverse selection cost, imposed on them by informed arbitrageurs. Lehar and Parlour (2021)

and Foley et al. (2023) further show that the pool size acts as an equilibrating mechanism

on DEXs, equivalent to the bid-ask spread on CEXs.

Uniswap v3. In Uniswap v2, liquidity deposited in the pool is uniformly distributed

along the price curve, i.e. it is available for trading on the entire price range, [0,∞[. The

advantage of this traditional implementation of AMM is that LPs earn fees irrespective of

the market price. However, it requires a great amount of capital to be “locked up” in the

pool without being “active”, i.e. used in swaps. For example, prices close to infinity are

definitely unrealistic, but the same amount of liquidity is reserved at these unrealistic prices

than at the market price.

Uniswap v3 seeks to improve “capital efficiency” of liquidity providers, by allowing them

to “concentrate” their liquidity on smaller price ranges. When they open a new liquidity

position, i.e. deposit their tokens to a Uniswap v3 pool, they have to specify a price range,

[pa, pb], where pa is the minimum price and pb the maximum price of token X in units of
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token Y at which their position is active. According to Uniswap v3 whitepaper (Adams

et al., 2021), “a position only needs to maintain enough reserves to support trading within

its range, and therefore can act like a constant product pool with larger (virtual) reserves

within that range”.

Figure A3 illustrates the notion of “virtual reserves”. A position on a range of [pa, pb]

and a market price pc ∈ [pa, pb] only needs to hold a smaller amount of real X reserves, xreal,

which are gradually depleted (i.e. swapped against Y reserves) until the market price, pc,

reaches the upper price bound, pb. If the market price reaches pb, then all X reserves are

depleted and the position is no longer active, i.e. stops earning fees. The position then

consists only of Y reserves. Similarly, this position only needs to hold yreal reserves, which

are gradually depleted until the market price reaches the lower price bound, pa, when Y

reserves are depleted and the position becomes inactive. Should the pool price fall back to

the specified price range, the liquidity position becomes active again. Thus, virtual reserves

(x and y) magnify real reserves (xreal and yreal) in a way that the liquidity in the pool

matches that of the market price range44.

[Insert Figure A3 approximately here]

The price curve for Uniswap v3 is a modification of x · y = k, such that the position is

solvent exactly within its price range, [plower, pupper] (Adams et al., 2021):

(
x+

L
√
pupper

)
(y + L

√
plower) = L2, (5)

where x and y represent virtual reserves, and L is a “liquidity” constant that shows the

amount of liquidity deposited for each position.

44Heimbach et al. (2022) provide mathematical relations between real and virtual reserves and discuss
them in more detail.
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In contrast to Uniswap v2, the amount of tokens deposited in a liquidity position is no

longer in 50-50 ratio. In fact, it depends on the selected price range relative to the market

price, with larger reserves of Y required if the price range is skewed to prices lower than

the market price, pmkt. If the selected price range is strictly lower than the market price

(and excludes it), then LP only has to deposit token Y. This case corresponds to point b

being below point c on the price curve on Figure A3, i.e. pmkt > [plower, pupper]. Similarly,

if the preferred price range is strictly higher than the market price, then LP only has to

deposit token X. This case corresponds to point a being above point c on Figure A3, i.e.

pmkt < [plower, pupper].

Adding liquidity to Uniswap v3 pools. On Uniswap v3, LPs are able to specify

the price range on which their liquidity position will be active. To make this possible, the

space of prices is divided into discrete ticks, [i, i ∈ Z]. According to Uniswap v3 whitepaper

(Adams et al., 2021), there can be a tick at every price that is an integer power of 1.0001,

such that the following relation holds for the price pi corresponding to tick i:

pi = 1.0001i (6)

Specifically, this relation implies that each tick is 1 bp (basis point) away from its neigh-

bouring ticks. However, not all ticks can be initialized, but only those that are divisible by

a pre-specified pool parameter, the tick spacing s. For example, USDC/ETH 0.3% pool has

a s of 60. Therefore, only ticks that are divisible by 60 can be initialized, i.e. (-120, -60, 0,

60, 120...)45. A tick range can then be defined as [i, i+ s].

One liquidity position of an LP can cover one or more tick ranges, [i, i+ s]. The liquidity

on each tick range [i, i+ s], Li, is then an aggregation of all LP positions that are currently

45In general, lower values for s allow for more precise price ranges. However, gas fees for swaps might
be more expensive in pools with low s, because the trader is required to pay a constant gas fee for every
initialized tick that the swap crosses.
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active on it. Therefore, aggregated liquidity in a Uniswap v3 pool is no longer constant (as

in Uniswap v2), but fragmented across multiple tick ranges. Figure A4 illustrates a stylized

distribution of liquidity on the price space for Uniswap v2 and Uniswap v3 (Adams et al.,

2021).

[Insert Figure A4 approximately here]

Let pi denote the price of token X (in units of token Y) that corresponds to tick i.

From Uniswap v3 whitepaper (Adams et al., 2021), we obtain the following relations for xi,

quantity of tokens X locked in the tick range [i, i+ s], and yi, quantity of tokens Y locked in

the same tick range:

xi =
Li√
zi

− Li√
pi+s

(7)

yi = Li · (
√
zi −

√
pi) (8)

where

zi =


pi if pmkt ≤ pi

pmkt if pi < pmkt < pi+s

pi+s if pi+s ≤ pmkt

Appendix D provides a numerical example of adding liquidity to USDC/ETH 0.3% pool.
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Figure A2: Price curve for Uniswap v2: constant product market maker (CPMM). This figure

illustrates a swap on the BTC/USDT pool on Uniswap v2. Pool reserves of token X, i.e. BTC, are on the

x-axis. Pool reserves of token Y, i.e. USDT, are on y-axis. The price curve, x · y = k, ensures the constant

product between the reserves of the pool’s two assets (in absence of liquidity deposits/withdrawals). A buy

of BTC with USDT reduces the reserves of BTC from x to x′ and increases the reserves of USDT from y to

y′. The pool price after the buy moves upwards from pc to pb.
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Figure A3: Price curve for Uniswap v3: constant product market maker (CPMM) with virtual

reserves. This figure illustrates the virtual reserves curve on Uniswap v3. A position on a range of [pa, pb]

and a market price pc ∈ [pa, pb] only needs to hold a smaller amount of real X reserves, xreal, which are

gradually depleted (i.e. swapped against Y reserves) until the market price, pc, reaches the upper price

bound, pb. If the market price reaches pb, then all X reserves are depleted and the position is no longer

active, i.e. stops earning fees. The position then consists only of Y reserves. Similarly, this position only

needs to hold yreal reserves, which are gradually depleted until the market price reaches the lower price

bound, pa, when Y reserves are depleted and the position becomes inactive.

Source: Uniswap v3 whitepaper
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Figure A4: Examples of liquidity distributions on the price space. Panel (I) shows that liquidity

distribution in Uniswap v2 is constant on the entire price range. Panel (II) shows an example of a single

position of a liquidity provider on Uniswap v3 with the specified price range [plower, pupper]. Again, liquidity

provided is constant within the price range of this position. This price range can cover one or more tick

ranges [i, i + s]. Panel (III) shows fragmentation of liquidity across multiple tick ranges on Uniswap v3.

Liquidity within each tick range is constant and represents an aggregation of all LP positions active on this

tick range.

Source: Adams et al. (2021).
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Appendix C

Trading on Uniswap v3

Trading on Uniswap v3 within a given tick range. Suppose we would like to submit

a trade to USDC/ETH 0.3% pool, i.e. swap tokens X and tokens Y. Let △x and △y denote

the total quantities of tokens X and Y to be swapped in a trade (for example, if we would like

to buy tokens X with tokens Y, we have △x < 0 and △y > 0). Since liquidity is fragmented

along tick ranges, we have to consider separately every tick range that is necessary for trade

execution. Let △xi and △yi denote the quantities of tokens X and Y to be swapped within

a given tick range [i, i+ s]. Price curve in Equation (5) imposes:

(
xi +△xi +

Li√
pi+s

)
· (yi +△yi + Li ·

√
pi) =

(
xi +

Li√
pi+s

)
· (yi + Li ·

√
pi) = L2

i (9)

from where we obtain the following for △xi and △yi:

⇒


△xi = −

△yi·(xi+
Li√pi+s

)

yi+△yi+Li·
√
pi

△yi = −△xi·(yi+Li·
√
pi)

xi+△xi+
Li√pi+s

(10)

Tick-crossing trades on Uniswap v3. Below we provide general formulas for trades

that are too large to be executed within a single tick range and involve crossing several ticks.

Suppose we would like to sell tokens X (USDC) for tokens Y (ETH). We are adding △x > 0

to the pool and withdrawing △y < 0.

For a given tick range [i, i+s], denote by △xmax
i the maximum quantity of tokens X that

you can add to this range (by taking reserves of token Y). Let △ymin
i denote the minimum
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quantity of tokens Y that you can “add” to this range - or, in other words, the maximum

quantity of tokens Y than you can take from this range by adding tokens X. From liquidity

distribution of the pool, we know reserves yi for each tick range, such that △ymin
i = −yi.

We can then compute △xmax
i using Equation (10):


△ymin

i = −yi

△xmax
i = −

△ymin
i · (xi +

Li√
pi+s

)

yi +△ymin
i + Li ·

√
pi

=
xiyi

Li ·
√
pi

+
yi√
pipi+s

Let {istart, istart − s, ..., iend} be the lower ticks of the consecutive tick ranges that we

use during the trade. We consume all available liquidity in the tick ranges of lower ticks

i ∈ {istart, istart− s, ..., iend+ s}, and spend our remaining tokens X in the tick range of lower

tick iend, such that △x and △y can be expressed as follows:


△x =

∑
i∈{istart,istart−s,...,iend+s}

△xmax
i +△xiend

△y =
∑

i∈{istart,istart−s,...,iend+s}

△ymin
i +△yiend

⇒


△xiend

= △x−
∑

i∈{istart,istart−s,...,iend+s}△xmax
i

△y
(10)
= −

∑
i∈{istart,istart−s,...,iend+s} yi −

△xiend
·(yiend

+Liend
·√piend

)

xiend
+△xiend

+
Liend√
piend+s

(11)

Appendix D provides numerical examples of calculating slippage for trades within the

current market range and for tick-crossing trades. Below we also provide formulas for the

opposite trade direction, i.e. buying X with Y.

Opposite trade direction: buy X with Y. Suppose we would like to buy tokens X

with tokens Y. We are adding △y > 0 to the pool and removing △x < 0.

For a given tick range [i, i+s], denote by △ymax
i the maximum quantity of tokens Y that
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you can add to this range (by removing reserves of token X). Let △xmin
i denote the minimum

quantity of tokens X that you can “add” to this range, i.e. the maximum quantity of tokens

X than you can take from this range by adding tokens Y. From liquidity distribution of the

pool, we know reserves xi for each tick range, such that △xmin
i = −xi. We can then compute

△ymax
i using Equation (10):


△xmin

i = −xi

△ymax
i = −

△xmin
i · (yi + Li ·

√
pi)

xi +△xmin
i + Li√

pi+s

=
xiyi

√
pi+s

Li

+ xi ·
√
pipi+s

Let {istart, istart + s, ..., iend} be the lower ticks of the consecutive tick ranges that we

use during the trade. We consume all available liquidity in the tick ranges of lower ticks

i ∈ {istart, istart+ s, ..., iend− s}, and spend our remaining tokens Y in the tick range of lower

tick iend, such that △x and △y can be expressed as follows:


△y =

∑
i∈{istart,istart+s,...,iend−s}

△ymax
i +△yiend

△x =
∑

i∈{istart,istart+s,...,iend−s}

△xmin
i +△xiend

⇒


△yiend

= △y −
∑

i∈{istart,istart+s,...,iend−s}△ymax
i

△x
(10)
= −

∑
i∈{istart,istart+s,...,iend−s} xi −

△yiend
·(xiend

+
Liend√
piend+s

)

yiend
+△yiend

+Liend
·√piend

.

(12)
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Appendix D

Numerical example

Adding liquidity to USDC/ETH 0.3% pool. To illustrate, suppose that an LP

would like to add liquidity to USDC/ETH 0.3% pool (with a s of 60). Assume the market

tick is 200618, such that the market price is:

pmkt = 1.0001200618

To convert prices to a human-readable format, we have to scale pmkt by 10(dy−dx), where

dy is the number of decimals for token Y and dx is the number of decimals for token X. In

our example, dy = 18 for ETH and dx = 6 for USDC:

pmktadj =
1.0001200618

10(18−6) = 0.00051558 ETH per USDC

which corresponds to 1/0.00051558 = 1939.56 USDC per ETH

Suppose an LP would like to add 50 ETH (token Y) to the price range [plower, pupper] that

corresponds to tick range [ilower, iupper] = [200520, 200640], illustrated as Mint 1 on Panel

A of Figure A5. Note that this range includes two corresponding elementary tick ranges:

[200520, 200580] and [200580, 200640]. How many USDC (token X) does the LP have to add

to complete their liquidity position?

[Insert Figure A5 approximately here]

To compute the required quantity of tokens X, we first infer the liquidity Lpos of this

position from Equation (8):

Lpos =
ypos√

pmkt−
√
plower

= 50·1018√
1.0001200618−

√
1.0001200520

= 4.505 · 1017

with zp = pmkt, because the position includes the market tick, plower < pmkt < pupper. Note

that we have to rescale 50 ETH to “Uniswap v3” format as follows: ypos = 50·10dy = 50·1018.

Given Lpos, we can compute xpos from Equation (7):
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xpos =
Lpos√
pmkt

− Lpos√
pupper

= Lpos

√
pupper−

√
pmkt√

pmkt·
√
pupper

Again to convert to “human readable” format, we have to scale xpos by 10dx , i.e. xposadj =

xpos/10
6 = 21812 USDC.

Suppose there are two additional mints to the pool, as illustrated on Panel A of Figure

A5. Table 2 below summarizes all three liquidity positions in the pool:

Table 2: Adding liquidity to USDC/ETH 0.3% pool

ilower iupper xpos ypos Lpos

Mint 1 200520 200640 21812 50 4.505e17

Mint 2 200580 200640 44934 40 9.281e17

Mint 3 200580 200700 250848 60 1.392e18

To compute aggregated liquidity on each tick range, Li, we have to add up liquidity

of all active liquidity positions, Lpos, on a given tick range. Panel B of Figure A5 shows

distribution of aggregated liquidity by tick range. For example, there is only one active

liquidity position on tick range [200520, 200580]. Therefore, Li = Lpos = 4.505e17. On the

next tick range, [200580, 200640], all three liquidity positions are active, such that Li =∑3
j=1 Lposj = 2.771e18. From Equations (7) and (8), we can then compute aggregated xi

and yi liquidity reserves for each tick range [i, i+ s]. Table 3 below summarizes distribution

of liquidity and reserves by tick range:

Table 3: Liquidity distribution by tick range

[200520,200580] [200580,200640] [200640,200700]

Li 4.505e17 2.771e18 1.392e18

xi (USDC) 0 134159 183427

yi (ETH) 30.58 119.42 0
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Note that tick ranges that do not include the market tick, imkt = 200618, have only

reserves in one of the tokens, either X (if i > imkt), or Y (if i+ s < imkt).

Trading on Uniswap v3 within a given tick range. Assume the current distribution

of liquidity in USDC/ETH 0.3% pool as on Panel B of Figure A5. Suppose we would like to

buy ETH with 200K USDC. How many ETH can we get?

We know that △xi = 200K. Further, from Table 3 we know Li, xi and yi for the market

tick range, [200580, 200640]. From Equation (10), we obtain for △yi:

△yi = −200000·106(119.42·1018+2.771·1018·
√
1.0001200580)(

134159·106+200000·106+ 2.771·1018√
1.0001200640

)
·1018

= −102.94 ETH

Overall, we obtain 102.94 ETH with 200K USDC. Therefore, the average execution price

is pavg =
△y
△x

= 102.94
200000

= 0.0005147 ETH per USDC. The slippage of this trade is:

Slippage =
∣∣∣ pavgpmkt

− 1
∣∣∣ = ∣∣0.00051470

0.00051558
− 1

∣∣ = 0.0017 = 17 bp

Tick-crossing trades. In the numerical example above, we could execute the whole

trade within the market tick range, because the reserves of Y in this tick range were sufficient,

i.e. 119.42 > 102.94. To illustrate a tick-crossing trade, suppose we would now like to buy

ETH with a larger quantity of 250K USDC. How many ETH can we get?

We first start computing △xmax
i for the market tick range, [200580,200640], given the

current reserves yi = 119.42 ETH and xi = 134159 USDC:

△xmax
i = xiyi

Li·
√
pi
+ yi√

pipi+s
= 134159·106·119.42·1018

2.771·1018·
√
1.0001200580

+ 119.42·1018√
1.0001200580·1.0001200640

△xmax
i,adj =

△xmax
i

106
= 232064 USDC

This means that we can spend 232064 USDC in the market tick range, swapping them

for the full amount of 119.42 ETH reserves. Therefore, we are left with △xiend
= 250K −

232064 = 17936 USDC to spend in the next (lower) tick range, [200520,200580]46.

46In this simple example, our trade of 250K only crosses one tick. Therefore, there is only one term in the
sum

∑
i∈{istart,istart−s,...,iend+s} △xmax

i .
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From Equation (11), we can now compute △y :

△y = −119.42 · 1018 − 17936·106(30.58·1018+4.505·1017·
√
1.0001200520)

0+17936·106+ 4.505·1017√
1.0001200580

△yadj =
△y
1018

= −128.63 ETH

Overall, we obtain 128.63 ETH with 250K USDC. Therefore, the average execution price

is pavg =
△y
△x

= 128.63
250000

= 0.00051452 ETH per USDC. The slippage of this trade is:

Slippage = |0.00051452
0.00051558

− 1| = 0.0021 = 21 bp
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Figure A5: Numerical example: Adding liquidity to USDC/ETH 0.3% pool.

Panel A: Liquidity mints

Panel B: Liquidity by tick range
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Appendix E

Variable Description Source

Arbitrum A variable that takes the value 1 if the transaction takes place on

Arbitrum, and zero otherwise.

The Graph

BlockScaling A variable that takes the value 1 if the transaction takes place

either on Arbitrum or on Polygon, and zero otherwise.

The Graph

Buy A variable that takes the value 1 if the trade is a buy of tokens X

with tokens Y, and zero otherwise.

The Graph

Intensity Repositioning intensity of liquidity providers, measured as the

value of repositioning mints (in $) over a 5-minute interval di-

vided by the total value minted (in $) over the same interval.

We define a repositioning mint as a mint preceded by a burn in

the same pool by the same liquidity provider in the previous 5

minutes.

The Graph

IntensFreq Alternative measure of repositioning intensity, calculated as the

number of repositioning mints, divided by the total number of

mints over a 5-minute interval.

The Graph

Large A variable that takes the value 1 if the size of the trade exceeds a

specified cutoff (e.g., $1K or $5K), and zero otherwise.

Conc Liquidity concentration, measured as market depth within

1%/2%/10% of pmkt, divided by TV L. Market depth within x%

of pmkt is computed as the $ value of the liquidity between pmkt

1+x%

and pmkt · (1 + x%)

The Graph

pmid Mid price of a position, computed as
√
plower · pupper. The Graph

pmkt Current price of the pool The Graph

Polygon A variable that takes the value 1 if the transaction takes place on

Polygon, and zero otherwise.

The Graph

Precision Precision of repositioning mints around pmkt, computed and scaled

as 1− 1.0001
−1

Gap·Length .

The Graph

Gap Position gap of repositioning mints, measured as a relative differ-

ence between pmid and pmkt, computed as
∣∣∣ pmid

pmkt
− 1

∣∣∣. The Graph

Length Price range length of repositioning mints, computed as
|pupper−plower|

pmid
.

The Graph
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Return 1-minute return of ETH/USD. Binance

Size Hypothetical trade size in 100, 500, 1K, 5K, 10K, 50K, 100K (in

$).

Slippage Slippage, computed as
∣∣∣ pavg

pmkt
− 1

∣∣∣. Please refer to Appendix X for

details on pavg computation on Uniswap v3.

The Graph

TV L Total value locked, i.e. $ value of all the liquidity in the pool. The Graph

V olatility Realized volatility of ETH/USD over the previous 24 hours, com-

puted as the square root of the sum of squared 1-minute returns

over previous 24 hours.

Binance

V olume Traded volume over previous 24 hours (in $). The Graph
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Internet Appendix

Table IA1: Repositioning intensity and liquidity concentration: Large LPs. This table replicates

our analysis from Table 5 for a subset of large LPs. For each pool and chain, we sum up total minted and

burned liquidity (in $) for each individual LP over our entire sample period. We then define large LPs as

those in the top quartile of our sample distribution. Panel A reports results for the low-fee pool (ETH/USDC

0.05%), and Panel B for the high-fee pool (ETH/USDC 0.3%). Arbitrum (Polygon) takes value of 1 for

Arbitrum (Polygon) pools, and zero for Ethereum pools. Model (1) reports the results for the first-stage

regression, with repositioning intensity of LPs, Intensity, as the dependent variable and Arbitrum as the

main explanatory variable, which is used as an instrument for the endogenous Intensity. Model (2) reports

results for the second-stage regression, with liquidity concentration within 2% of the market price, Conc, as

the dependent variable. The set of instruments consists of all explanatory variables, except that Intensity

is replaced with Arbitrum. The table shows corresponding results for Polygon pools in Models (3) and (4),

with Polygon used as an instrument for the endogenous Intensity. Models (5) and (6) use BlockScaling

that takes value of 1 for both Arbitrum and Polygon pools, and zero for Ethereum pools, as an instrument.

The vector of control variables consists of V olume, V olatility and |Return|. See Appendix E for a detailed

description of variable definitions. All regressions include hour- and day-fixed effects, with standard errors

clustered at the day level. T-statistics of the two-tailed t-test with the null-hypothesis of a coefficient equaling

zero are reported in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%

level, respectively.

Panel A: ETH/USDC 0.05%
Arbitrum Polygon BlockScaling

Int Conc Int Conc Int Conc
2% 2% 2%

(1) (2) (3) (4) (5) (6)

Arbitrum 0.25 ***
(32.87)

Polygon 0.19 ***
(27.33)

BlockScaling 0.21 ***
(35.16)

Intensity 0.08 *** 0.10 *** 0.10 ***
(44.84) (49.92) (52.41)

V olume -0.01 0.01 *** -0.01 *** 0.01 *** 0.01 ** 0.01 ***
(-1.58) (46.49) (-3.70) (50.86) (2.15) (53.91)

V olatility -0.53 -1.56 *** 0.18 -1.48 *** -1.53 *** -1.37 ***
(-0.91) (-39.64) (0.38) (-41.87) (-3.17) (-47.51)

|Return| 22.56 *** -2.51 *** 17.12 *** -2.26 *** 21.25 *** -2.80 ***
(16.61) (-24.52) (16.72) (-26.56) (19.10) (-34.40)

Observations 90,401 90,401 119,075 119,075 181,095 181,095
HourFE Yes Yes Yes Yes Yes Yes
DateFE Yes Yes Yes Yes Yes Yes



Panel B: ETH/USDC 0.3%
Arbitrum Polygon BlockScaling

Int Conc Int Conc Int Conc
2% 2% 2%

(1) (2) (3) (4) (5) (6)

Arbitrum 0.17 ***
(14.44)

Polygon 0.21 ***
(28.36)

BlockScaling 0.18 ***
(25.46)

Intensity 0.06 *** 0.17 *** 0.11 ***
(27.21) (40.20) (41.73)

V olume -0.19 *** 0.06 *** -0.02 0.04 *** -0.02 0.07 ***
(-4.74) (37.89) (-1.10) (18.73) (-1.07) (48.48)

V olatility 3.27 *** -1.13 *** -0.05 -0.95 *** 0.22 -1.47 ***
(4.64) (-33.73) (-0.10) (-14.01) (0.41) (-33.85)

|Return| 9.76 *** -0.76 *** 18.27 *** -3.23 *** 18.37 *** -2.15 ***
(7.63) (-9.61) (11.36) (-16.39) (12.84) (-17.85)

Observations 34,264 34,264 38,424 38,424 54,151 54,151
HourFE Yes Yes Yes Yes Yes Yes
DateFE Yes Yes Yes Yes Yes Yes



Table IA2: Repositioning intensity and liquidity concentration: Other pairs. This table replicates

our analysis from Table 5 for four other pairs that are actively traded across all three chains (i.e. 12 additional

pools): BTC/ETH 0.05%, BTC/ETH 0.3%, UNI/ETH 0.3% and LINK/ETH 0.3%. Arbitrum (Polygon)

takes value of 1 for Arbitrum (Polygon) pools, and zero for Ethereum pools. Model (1) reports the results

for the first-stage regression, with repositioning intensity of LPs, Intensity, as the dependent variable and

Arbitrum as the main explanatory variable, which is used as an instrument for the endogenous Intensity.

Model (2) reports results for the second-stage regression, with liquidity concentration within 2% of the

market price, Conc, as the dependent variable. The set of instruments consists of all explanatory variables,

except that Intensity is replaced with Arbitrum. The table shows corresponding results for Polygon pools in

Models (3) and (4), with Polygon used as an instrument for the endogenous Intensity. Models (5) and (6)

use BlockScaling that takes value of 1 for both Arbitrum and Polygon pools, and zero for Ethereum pools,

as an instrument. The vector of control variables consists of V olume, V olatility and |Return|. See Appendix

E for a detailed description of variable definitions. All regressions include hour- and day-fixed effects, with

standard errors clustered at the day level. T-statistics of the two-tailed t-test with the null-hypothesis of a

coefficient equaling zero are reported in parentheses. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively.

Arbitrum Polygon BlockScaling
Int Conc Int Conc Int Conc

2% 2% 2%
(1) (2) (3) (4) (5) (6)

Arbitrum 0.18 ***
(26.16)

Polygon 0.12 ***
(22.47)

BlockScaling 0.15 ***
(28.36)

Intensity 0.11 *** 0.44 *** 0.29 ***
(34.47) (40.52) (48.86)

V olume 0.01 ** 0.03 *** 0.03 *** 0.03 *** 0.02 *** 0.03 ***
(2.55) (40.08) (8.06) (23.79) (5.27) (46.91)

V olatility -0.81 ** -1.76 *** 0.08 -2.52 *** -0.26 -2.49 ***
(-2.58) (-66.80) (0.34) (-38.92) (-0.96) (-58.44)

|Return| 20.35 *** -3.15 *** 17.51 *** -9.14 *** 20.68 *** -7.50 ***
(7.08) (-8.07) (12.06) (-15.23) (11.57) (-13.11)

Observations 57,904 57,904 98,608 98,608 131,461 131,461
HourFE Yes Yes Yes Yes Yes Yes
DateFE Yes Yes Yes Yes Yes Yes



Table IA3: Repositioning precision and liquidity concentration: Arbitrum and Polygon. This

table presents results of instrumental variable regressions that test causal effect of repositioning precision of

LPs, separately for Arbitrum and Polygon. We use three measures of repositioning precision: Gap, Length

and Precision. See Appendix E for a detailed description of variable definitions. Panel A reports results for

the low-fee pool (ETH/USDC 0.05%), and Panel B for the high-fee pool (ETH/USDC 0.3%). Model (1)-(3)

report the results of the second-stage regressions with liquidity concentration within 2% as the dependent

variable. Arbitrum is used as an instrument for the endogenous repositioning precision. Models (4)-(6)

present corresponding results, with Polygon used as an instrument for repositioning precision. The vector

of control variables consists of V olume, V olatility and |Return|. All regressions include hour- and day-

fixed effects, with standard errors clustered at the day level. T-statistics of the two-tailed t-test with the

null-hypothesis of a coefficient equaling zero are reported in parentheses. ***, **, and * indicate statistical

significance at the 1%, 5%, and 10% level, respectively.

Panel A: ETH/USDC 0.05%
Arbitrum Polygon
Conc, 2% Conc, 2%

(1) (2) (3) (4) (5) (6)

Gap -2.73 *** -4.76 ***
(-17.52) (-12.54)

Length -0.35 *** -0.50 ***
(-28.48) (-24.57)

Precision 0.12 *** 0.22 ***
(24.31) (18.00)

V olume 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.01 ***
(15.97) (35.36) (25.24) (8.27) (18.51) (16.40)

V olatility -1.15 *** -1.41 *** -1.28 *** -0.65 *** -1.07 *** -0.89 ***
(-11.91) (-22.52) (-19.44) (-4.53) (-14.87) (-10.39)

|Return| -1.64 *** -2.37 *** -1.15 *** -2.12 *** -2.75 *** -1.76 ***
(-11.24) (-16.20) (-11.20) (-8.86) (-16.42) (-11.02)

Observations 47,987 47,987 47,987 65,146 65,146 65,146
HourFE Yes Yes Yes Yes Yes Yes
DateFE Yes Yes Yes Yes Yes Yes



Panel B: ETH/USDC 0.3%
Arbitrum Polygon
Conc, 2% Conc, 2%

(1) (2) (3) (4) (5) (6)

Gap -0.77 *** -8.76 ***
(-7.29) (-3.71)

Length -0.06 *** -0.30 ***
(-9.89) (-16.98)

Precision 0.07 *** 0.24 ***
(8.06) (15.80)

V olume 0.04 *** 0.05 *** 0.04 *** -0.07 0.02 *** -0.00
(9.37) (17.81) (10.15) (-1.60) (4.26) (-0.13)

V olatility -0.81 *** -0.97 *** -0.59 *** 1.79 -0.61 *** 0.24
(-8.89) (-15.25) (-6.23) (1.52) (-4.41) (1.29)

|Return| -0.45 *** -0.27 *** -0.31 *** -2.19 ** -1.35 *** -2.26 ***
(-3.91) (-3.65) (-3.01) (-2.00) (-6.66) (-7.58)

Observations 7,153 7,153 7,153 10,746 10,746 10,746
HourFE Yes Yes Yes Yes Yes Yes
DateFE Yes Yes Yes Yes Yes Yes



Table IA4: Repositioning precision and liquidity concentration: Other pairs. This table replicates

our analysis from Table 8 for four other pairs that are actively traded across all three chains (i.e. 12 additional

pools): BTC/ETH 0.05%, BTC/ETH 0.3%, UNI/ETH 0.3% and LINK/ETH 0.3%. We use three measures

of repositioning precision: Gap, Length and Precision. See Appendix E for a detailed description of variable

definitions. Model (1) reports the results of the first-stage IV regression with Gap as the dependent variable.

Model (2) reports the results of the second-stage regression with liquidity concentration within 2% as the

dependent variable. Blockscaling is used as an instrument for the endogenous repositioning precision (i.e.

Gap). Models (3) and (4) present corresponding results for Length as a measure of repositioning precision.

Models (5) and (6) present results for Precision. The vector of control variables consists of V olume,

V olatility and |Return|. All regressions include hour- and day-fixed effects, with standard errors clustered

at the day level. T-statistics of the two-tailed t-test with the null-hypothesis of a coefficient equaling zero

are reported in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively.

Gap Conc Length Conc Precision Conc
2% 2% 2%

(1) (2) (3) (4) (5) (6)

BlockScaling -0.003 ** -0.14 *** 0.13 ***
(-2.25) (-15.45) (10.64)

Gap -13.64 ***
(-4.69)

Length -0.30 ***
(-43.83)

Precision 0.28 ***
(19.27)

V olume -0.00 *** -0.02 * -0.07 *** 0.02 *** 0.08 *** 0.02 ***
(-6.80) (-1.68) (-10.74) (23.07) (8.95) (9.20)

V olatility 0.59 *** 5.23 *** 5.19 *** -1.03 *** -10.12 *** 0.04
(11.53) (2.98) (12.68) (-19.20) (-14.26) (0.26)

|Return| -0.02 -1.27 -6.14 *** -3.29 *** 5.06 *** -2.40 ***
(-0.19) (-0.95) (-5.63) (-10.40) (3.97) (-6.80)

Observations 36,726 36,726 36,726 36,726 36,726 36,726
HourFE Yes Yes Yes Yes Yes Yes
DateFE Yes Yes Yes Yes Yes Yes
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