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Ports as gateways for the energy transition

Harbour

» Transport hub for goods, fuels, materials and passengers between land and sea
 Ships for installing and O&M of offshore wind turbines

 Ships for fishing and aquaculture

» Ships for harvesting of algae

Energy hub

« Electricity supply of ships while at shore

* Fuel hub including hydrogen, ammonia and methanol

« Landing zone for electricity from offshore wind turbines

« Energy infrastructure hub for electricity, hydrogen and green fuels

* Producer of renewable energy and alternative fuels

* Industrial hub facilitating use of by-products including heat and oxygen
» Collecting offshore wind turbines
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Ports as Energy Transition Hubs (POTENT)
MSCA network (15 PhDs)

The main research objectives of POTENT focus on how ports can support and
accelerate the clean energy transition in Europe.

Research questions are organized along three work packages (WP):

WP1 ‘Transition Infrastructure’ aims to identify gaps in renewable energy and green fuel
infrastructure and develop technologies to address these gaps, especially integration of
digital technologies to optimize energy use, improve efficiency, and integrate renewables.

WP2 ‘Socio-Techno-Economic Analysis’ considers the systemic aspects of integrated
energy ports, including the implications of integrating ports into electricity grids, and the
socioeconomic and regulatory aspects of port development.

WP3 ‘Port Governance and Business Models’ investigates the governance and business
model challenges and opportunities that ports face in the energy transition and explores
how they can create and capture value, manage stakeholder relationships, and make
decisions that align with the energy transition goals.

Our PhD project: De-Risking Green Maritime Fuel Transition with focus on modeling
risk and uncertainty - and developing adaptability strategies (2025-2028)
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nature communications

Article https://doi.org/10.1038/s41467-024-49867-w

A unified European hydrogen infrastructure
planning to support the rapid scale-up of
hydrogen production
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Scenarios

Hydrogen Europe (H2E)

Green H2 Europe (GH2E)

Self Sufficient Green H2

Europe (SSGH2E)

H2 production pathways:

H2 production pathways:

H2 Import

H2 production pathways:




DATA: European Hydrogen BackBone (EHB) - 28 Gas TSOs

2050 allocation
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WEO 2022, conventional fuel prices (NZE scenario), high CO2 tax 140 €/ton for 2030, to 250 €/ton for 2050
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== Sector coupled energy systems analysis - Balmorel
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Partial Equilibrium model
Objective Function: Minimize socio-economic cost of operations and investments
Open source (GAMS based) www.balmorel.com
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http://www.balmorel.com/

== Results: Electricity mix (2050)

Green: Approximately additional 800 TWh of electricity demand Scenario: BASE
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= Results: BASE - Where, when and how to produce H2?
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o Going green and self-sufficient (2050)

o
o
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H2 Storage TWh (2050)
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Scenario: BASE

Total H2 Storage: 49.9TWh
Total H2 network: 255.1TWkm
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Going green with imports (2050)

Scenario: Green H2 Europe
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H2 Storage Twh (2050)
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= Co-location of H2 and e-fuel production

Scenario: BASE

Total H2 storage: 50.3TWh
Total H2 network: 232.7TWkm

Scenario: Green H2 Europe

Total H2 storage: 63.2TWh
Total H2 network: 298.6TWikm
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Conclusions on hydrogen infrastructure

= Hydrogen production needs to be flexible

» Hydrogen production is located in the periphery (mainly the South) to supply West/ Central
Europe.

» Some hydrogen imports to Europe via pipelines from third nations.

= A green hydrogen European economy would require a rapid infrastructure scale-up and
additional renewable investments.

» Storage provides flexibility (intra day and seasonal) integration of PV and less need for grids

» Co-location of H2 and derivatives production can reduce H2 imports to Central Europe and
hence the network substantially

= Europe can become self-sufficient and utilize green hydrogen by 2050 at relatively small
additional system costs
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Future, energy efficient,
wind assisted shipping,
sailing on green fuels
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X2 iScience

This journal Journals Publish News & events About

ARTICLE - Volume 25, Issue 12, 105630, December 22, 2022 - Open Access

Requirements for a maritime transition in line
with the Paris Agreement

Sebastian Franz &2 X - Nicolas Campion - Sara Shapiro-Bengtsen - Rasmus Bramstoft -
Dogan Keles - Marie Mlnster
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SEAMAPS model

Fuel Cost
Vessel Stock
=
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Solution space to reach
IPCC well-below 2° scenario

i
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Conclusion on policies

1. Significantly higher carbon pricing (around 300EUR/tCO,eq) than currently
expected by industry and literature (200EUR/tCO,eq can be found in existing

literature)

2. Fuel efficiency gains reaching around 20-30% lower fuel demand compared to

today's projection in 2050

3. Fast upscaling of low-carbon technologies of at least 50% annual capacity

growth
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Environ. Res. Lett. 19 (2024) 054014 https://do1.org/10.1088/1748-9326/ad3bce

ENVIRONMENTAL RESEARCH
LETTERS

LETTER

Impact of endogenous learning curves on maritime transition
pathways

Sebastian Franz™ ' and Rasmus Bramstoft
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Non-convex Mixed-Integer Quadratically
Constrained Programming (MIQCP)

Convex Non-Convex

\

Linear Non-Linear

\

Relaxing optimality gap (MIPGap parameter) else so solutions can be found
-> Only near optimal solutions can be found

Source: https://www.gurobi.com/wp-content/uploads/2020-01-14_Non-Convex-Quadratic-Optimization-in-Gurobi-9.0-Webinar.pdf
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DTU Input to optimization model Output from optimization model
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« Significant difference between both modelling methods

 Difference depends on the underlying assumptions
* In general: With endogenous learning the models does not have to wait for cost to decay.
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o
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Output from Optimization Model Output from Optimization Model
Endogenous learning curve Exogenous learning curve
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Conclusions on endogenous learning curves

1. Significantly lower cumulative emissions (up to 45%) over the modelling

horizon

2. The importance of early investments and policy measures to trigger experience-

based learning as quickly as possible

3. Cost of climate mitigation is lower. BUT: Subsidies and technology cost may
increase (disregarded in this analysis) = Objective here: Show the impact on

decarbonization system cost not total cost (including subsidies & technology

cost but also climate damage “savings”)
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Overall conclusion

Yes!

* Maritime ports and shipping can become
important gateways for the energy transition
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The end ©

Marie Munster,

LinkedIn:
Website:
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Hydrogen production import - modeling
Hydrogen supply potential (TWh)'
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Hydrogen Imports from 39 nations
LW g 1oGW g oGw . OCW e

NI~ Scenario: Base

ELECTROLYZER SMR s SMR-CCS

Hydrogen Capacities (2050)

1.0 GWy2 -y
5.0 Wi Pt

= e g “ = Electrolysis capacity: 305GW,,
ANy S (3500-5500 FLH)
7 = SMR-CSS capacity: 61 GW,,

= ﬂ I Importing H, from 3rd nations (2050)

- = Marroco: 42/115 (TWh)
2R S NI S = Tunisia: 61/375 (TWh)
I = Ukraine: 23/100 (TWh)




=
—]
—

System costs (2050)

i

System cost difference to BASE 2050:

GH2E ~3%
SSGH2E ~4%
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== Maritime optimization model (SEAMAPS)
oo
min Z@& ¥, INVs - NBg,, + OEM - SS,, +>Y s, Frsy - (FCpy+ FTg,) (1)
Investment
expenditure foranew New build ships  Operation and Ship-stock
build average vessel (4 iaple) maintenance cost  (variable)
(parameter) (parameter)

Introduction - Methods - Results - Conclusions
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== Maritime optimization model (SEAMAPS)
oo
minZ =Y, INVg - NBs, + OEM; - SS; (1)
Type and amount of Fuel-cost Fuel-tax/carbon tax
fuel used (parameter (MIP) or (parameter)
(variable) variable (Non-convex
MICQP))

Introduction - Methods - Results - Conclusions
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