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Abstract 

Renewable Energy Zones (REZ) and the associated transmission network infrastructure 

are an important policy development in Australia’s transitioning electricity market.  REZs 

form the basis upon which to expand the renewable hosting capacity of the National 

Electricity Market (NEM) at scale, while simultaneously minimising the footprint of 

infrastructure – noting community, cultural heritage and environmental (i.e. biodiversity) 

sensitivities.  In the NEM’s Queensland region, REZs are developed outside the 

regulatory framework as non-regulated or ‘merchant’ assets, with connecting generators 

paying user charges.  Early REZs involved a small number of committed generators 

connecting to, and fully subscribing, the REZ asset.  Under such conditions, cost 

allocation is straight forward.  But when a geographically dispersed coalition of 

generators seek to connect over different timeframes and with longer distances involved – 

the cost allocation task and the tractability of merchant REZ commitment rises in 

complexity.  Since merchant REZs are a novel concept, there is no historic practice to 

draw from.  In this article, we identify the optimal coalition of connecting generators and 

rely on Shapley’s (1951) seminal work to devise a fair and efficient set of user charges, 

albeit in the context of renewable power project development.  We also examine how to 

deal with transient idle capacity through structured financing and regulatory policy.  
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Abstract 
Renewable Energy Zones (REZ) and associated transmission network 
infrastructure are an important policy development in Australia’s 
transitioning electricity market.  Stylised on the Texas model, REZs form 
the basis upon which to expand renewable hosting capacity of Australia’s 
National Electricity Market at scale, while simultaneously minimising the 
footprint of infrastructure – noting community, cultural heritage and 
environmental (i.e. biodiversity) sensitivities.  In the Queensland region of 
the market, REZs have been developed outside the regulatory framework 
as ‘merchant’ assets, where connecting generators pay user charges 
rather than the rate base.  However, as a geographically dispersed 
coalition of generators seek to connect over longer distances, cost 
allocation and the financial tractability of merchant REZs rises in 
complexity.  In this article, we show how real-time line ratings and 
algorithmic cost allocation extends their financial viability. 

Keywords:  Renewable Energy Zones, Real-Time Line Ratings, 
Renewables, Battery Storage, Cost Allocation. 

JEL Codes: D52, D53, G12, L94 and Q40. 

1. Introduction

Renewable Energy Zones (REZs) are a key policy initiative in Australia’s National 
Electricity Market (NEM), designed to coordinate multiple renewable projects and 
minimise marginal transmission costs. If transmission costs were trivial and community 
attitudes consistently favourable, coordination may be unnecessary. However, 
renewable projects and transmission infrastructure encroaches on private land, 
competes with environmental (i.e. biodiversity) and agricultural objectives, and risks 
disturbing cultural sites (Simshauser and Newbery, 2024). Above all, transmission is 
costly. Consequently, REZs are essential even in a country as vast as Australia. 

While REZs in Australia have largely followed the Texas / ERCOT model, each of the 
NEM’s three largest regions (New South Wales, Queensland and Victoria) have taken 
subtly different approaches. New South Wales opted for a contestable model in 2020, 
planning large-scale, capital-intensive augmentations capable of hosting ~4-8GW in 
each REZ.   Time, complexity and costs were vastly understated with only one reaching 
financial close after six years of activity1. Victoria created VicGrid in 2021, with no 
progress to date.  Queensland pursued smaller, non-regulated (merchant) REZ 
augmentations extending from the transmission backbone and underwritten by generator 
user charges rather than as regulated assets paid by end-use consumers. This model 
enabled rapid deployment with three REZs planned, developed and energized in just 

 Centre for Applied Energy Economics & Policy Research, Griffith University. 
 Energy Policy Research Group, University of Cambridge.
 Business, Economics and Law Faculty, The University of Queensland. 
1 The Central West Orana REZ in NSW reached financial close albeit at multiples of the initial cost estimate. 
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four years – adding a cumulative 4.5GW hosting capacity.  The next REZ (~4GW) is 
under development at the time of writing.   

While the Queensland model has the advantage of speed, it must deal with the primal 
challenge of reaching financial viability.  This only occurs after multiple renewable 
projects have reached financial close and committed to connection.  Yet, wind and solar 
projects take years to develop and secure approvals and financing, meaning 
simultaneous generator commitments connecting in a common zone could only occur by 
chance.  More importantly, as with all scarce resources, REZs form an upward sloping 
supply curve.  As REZs extend further away from the transmission backbone, costs rise, 
and so too will generator user charges.  Under such conditions, user charges may 
exceed generators ‘capacity to pay’. 

Prior research on merchant REZs examined how various parameters alter hosting 
capacity including (i) the complementarity of renewable resources (Simshauser, 
Billimoria and Rogers, 2022; McDonald, 2023, 2024), (ii) access regimes (Newbery and 
Biggar, 2024; Simshauser and Newbery, 2024), (iii) line ratings (Simshauser, 2024) and 
(iv) battery storage (Simshauser, 2025).  However, prior research assessed each
parameter independently, and more crucially, REZ user charges to connecting 
generators were greatly simplified and allocated by expected output and by asset class.  
Such an approach ignores important locational differences and potentially binding 
capacity to pay constraints.   

In this article, we extend prior research by combining all parameters to identify the 
optimal mix of renewable plant in a REZ, and define a set of efficient, fair and 
defendable user charges to be allocated to connecting generators.   Using an applied 
example involving a 275kV REZ, we also navigate through a binding ‘capacity to pay’ 
problem by examining maximal combinations of connecting generators by contrasting 
static, seasonal, and real-time transmission line ratings.   

Model results show real-time ratings dramatically increase renewable hosting capacity 
and consequently, the collective capacity to pay by connecting generators.  While the 
scenario we construct is applied to an example of a merchant REZ in the NEM’s 
Queensland region, the framework is capable of being generalised and applied to any 
transitioning power system seeking to develop scale-efficient REZs under either a 
merchant or regulated model. 

This article is structured as follows: Section 2 reviews relevant literature.  Section 3 
introduces models and data.  Section 4 presents results.  Policy implications and 
conclusions follow. 

2. Review of Literature

REZs can be defined as an area comprising high quality renewable resources capable of 
being developed at scale (Pack et al., 2021).  The origins of renewable zones can be 
traced back to the Texas // ERCOT market, with the Public Utilities Commission of 
Texas approving the first ‘Competitive REZ’ or ‘cREZ’ in 2008 (Dorsey-Palmateer, 2020). 
By 2009, investment in wind capacity had stalled with curtailment rates rising to ~17% 
(Gowdy, 2022; Du, 2023).  This had been anticipated in 2005, and consequently 2400 
miles of 345kV transmission was approved at a final investment cost of ~$6.8 billion – 
specifically to connect remote wind resources with urban load centres (Jang, 2020).  
Wind transfer capacity in West Texas and the Panhandle was increased from ~6900 to 
18,500MW (Du and Rubin, 2018).  Following the cREZ, wind investments surged, and 
curtailment rates were cut to ~0.5% (Dorsey-Palmateer, 2020).    
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The main advantage of REZs is their ability to coordinate the connection of disparate 
VRE proponents that would otherwise act independently (Simshauser, 2021; McDonald, 
2023; Newbery and Biggar, 2024).  In this sense, REZs are designed to eliminate 
otherwise duplicate network investments (Simshauser, Billimoria and Rogers, 2022; 
McDonald, 2024).  In Australia, REZs have become an important initiative to facilitate 
additional renewable hosting capacity (McDonald, 2024).  In the NEM’s Victorian and 
NSW regions, REZs are state-led regulated asset developments.  As noted in Section 1 
in the NEM’s Queensland region, planned REZs are comparatively smaller in scale, 
larger in number, and merchant investments led by a benevolent, state-owned 
transmission planner (Newbery and Biggar, 2024; Simshauser and Newbery, 2024).  
However, all prior research greatly simplified user charges under conditions of perfect 
entry (Simshauser, Billimoria and Rogers, 2022; Simshauser, 2024, 2025; Simshauser 
and Newbery, 2024) 
 
The literature on cost sharing in transmission networks is extensive and has a long-
standing history. The use of Game Theory to address multiple aspects of cost sharing in 
power systems is well known (Contreras, 1997). A thorough review of approaches to 
cost sharing in transmission networks in these circumstances is presented in Khan and 
Agnihotri (2013).  Much of this literature focuses on the classic 6-bus system introduced 
by Garver (1970). This is a system involving a DC load flow model subject to a series of 
constraints (e.g. Kirchhoff’s laws).  
 

Other related research on transmission cost allocation includes Kristiansen et al., 
(2018), which reviews flexibility providers such as fast ramping gas turbines, hydropower 
and demand-side management using a generation and transmission capacity expansion 
planning model. The focus was on the different ways a technology can add value to a 
combination of technologies. Fuentes González et al., (2022) use a similar framework 
focusing on community energy projects. 
 
Our situation is different to the classic bus literature and the related transmission cost 
allocation research.2  Our problem, given a merchant REZ model, is the efficient 
allocation of shared infrastructure costs to large-scale renewable generators without 
regulator involvement.  The closest research to the work presented in this article is that 
found in Nylund (2014), where multiple entities in different countries collaborate to 
regionally expand power networks.  We apply the concepts of cost sharing based on 
cooperative game theory (Hougaard, 2009). Other approaches from the cost allocation 
literature are also possible.  However, these approaches don’t consider coalition 
structures and combined cost profiles of multiple players – which are relevant for the 
present context. In addition, given the costs of projects considered in this article are 
transferable between parties, a TU-game (or transferable utility game) is an appropriate 
approach to model the current situation (see Shellshear and Sudhölter, 2009).  For these 
reasons, we solve the current cost allocation problem using the Shapley Value (Shapley, 
1957) given its properties are desirable characteristics sought in the current context. 
 
3. REZ data and models 

Our task is to identify the optimal mix of renewable generation in a merchant REZ and 
examine cost allocation to a coalition of participating generators given capacity to pay 
constraints.  We examine an applied case study from the NEM’s Queensland region, 
noting the principles and modelling framework can be generalised to any power system. 
 

 
2 Our equivalence to the traditional bus approach would be to take the volume weighted production price as the synthetic 
version of a bus system (price being a proxy for demand with intermittent resources). However, this is still not a good 
match because there are definite economies of scale with shared REZ assets, hence our approach in this article. 
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By way of brief background, the topography of the Queensland power system comprises 
a 275kV transmission backbone extending over a 1500km range, from the north near 
Cairns to the southern border with New South Wales (Fig.1).  Renewable resources can 
be found along the length and breadth of the network with ideal locations identified in 
Fig.1.  The present analysis will focus on the Central Queensland REZ.  
 

Figure 1:   Renewable Energy Zones in Queensland   

 
 
3.1 REZ layout 
The Central Queensland REZ layout is presented in Fig.2.  To summarise, there are six 
potential tenants (Wind A, Solar B, Wind C, Solar D and Battery E) which trigger 
investment in Lines #1 and #2, and Substations #1 and #2, while ‘Wind F’ triggers Line 
#3 and Substation #3.   
 
It can be seen that an optimised REZ comprising all generation projects A..F involves an 
investment of $890m – the simple sum of Lines 1-3, Substation 1-3 and the $40m 
expansion of the Existing Substation.  For a benevolent transmission planner, breakeven 
‘user charges’ equate to 8.2% per annum (i.e. ~1.7% O&M and ~6.5% Return on 
Capital).  Given $890m capital invested, breakeven user charges therefore equal $73m 
pa (i.e. $890m x 8.2% = $73m).   
 
The task of the transmission planner is to identify the optimal mix of wind, solar and 
storage for the REZ and to identify a fair, efficient and defendable allocation of user 
charges across connecting generators within a capacity-to-pay constraint (see Section 
3.4).  Two generators (C and F) have ‘Direct Options’ to connect.  However, as can be 
seen from Fig.2, if each generator pursued direct connections (i.e. Options C and F), 
total investment costs would rise from $890m to $1,200m with breakeven user charges 
rising from $73m to $98m.  This exemplifies the notion of REZs – minimising costs and 
avoiding otherwise duplicative transmission infrastructure.   
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Figure 2:   Renewable Energy Zone Layout 

 
 
3.2 REZ line ratings 
For modelling purposes, REZ transmission line capacity is assumed to comprise a 
double circuit (twin sulphur) 275kV radial connection extending from the main 
transmission backbone, connecting the six renewable and storage generators. REZ 
network transfer limits are driven by conductor type and allowable operating 
temperatures (~200km from Australia’s coastline).  To maintain continuity with prior REZ 
research (Simshauser, 2021; Simshauser and Newbery, 2024), static and seasonal line 
transfer limits are outlined in Tab.1.  
 

Table 1: Static vs Seasonal REZ Line Transfer Limits (Double Circuit 275kV) 

 Normal Rating 
(Amps Double Circuit) 

Emergency Rating 
(Amps Single Circuit) 

Static 
 
Seasonal 
- Summer 

1734 
 
 

1734 

1281 
 
 

1281 
- Mild Seasons 1981 1387 
- Winter  
 
 
Static 
 
Seasonal 
- Summer 
- Mild Seasons 
- Winer 
 
𝐹𝐶𝐴𝑆 raise 

Interconnect Limit (𝜃𝑡=𝑆𝑢𝑚
𝑆𝑒𝑎𝑠 ) 

 

2162 
 

(MW Double Circuit) 
1536 

 
 

1536 
1756 
1916 

 
 

2863 

1461 
 

(MW Single Circuit) 
1145 

 
 

1145 
1229 
1295 

 
+750 

 

The derivation of results in Tab.1 for seasonal line ratings, using summer (𝑅𝐸𝑍𝑡=𝑆𝑢𝑚
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙) 

as the example, is as follows:   
 

Existing 
Substation $40m

New Sub #1
($80m)

Line #3 ($100m) 

New Sub #2
($80m)

Line #2 ($180m)

New Sub #3
($80m)Line #1 ($330m)

Direct Option C 
($320m)

Direct Option F 
($270m)

Direct 
$20m

Direct 
$20m

Entrant
Wind A 
350MW

Entrant
Wind C 
850MW

Entrant
Solar B 
400MW

Entrant 
Wind F 

0-1000MW

Entrant 
Solar D 

0-900MW

Entrant 
Battery E 
0-600MW
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𝑅𝐸𝑍𝑡=𝑆𝑢𝑚
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = 𝑀𝑖𝑛[(2 ∙ √3 ∙ 0.275 ∙ 𝑁𝑅𝑡=𝑆𝑢𝑚

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 ∙ 0.93), (√3 ∙ 0.275 ∙ 𝐸𝑅𝑡=𝑆𝑢𝑚
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 ∙ 0.93 +

𝐹𝐶𝐴𝑆), 𝜃𝑆𝑡𝑎𝑡𝑖𝑐]  → 𝑅𝐸𝑍𝑡=𝑆𝑢𝑚
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = 𝑀𝑖𝑛(1536, 〈1145 + 𝐹𝐶𝐴𝑆 750〉 = 1895, 2863𝑀𝑊) (1) 

 
The first term in Eq.1 identifies seasonal thermal transfer capacity for each conductor for 
each of two circuits (2 x √3 x 0.275 x Current) operating at Normal Rating during 

summer (𝑁𝑅𝑡=𝑆𝑢𝑚
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙) and converted to MW assuming a power factor of 0.93.  The 

second term in Eq.(1) repeats this process for a single circuit operating at its Emergency 

Rating during summer (𝐸𝑅𝑡=𝑆𝑢𝑚
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙) with a ‘runback scheme’ enabled inside the REZ, 

and Frequency Control Ancillary Services (𝐹𝐶𝐴𝑆) relied on outside the REZ under 
normal operating conditions (the limits of which are based on the loss of a single circuit 

due to, for example, lightning strikes).  The third term 𝜃𝑆𝑡𝑎𝑡𝑖𝑐 is an exogenously 
determined downstream constraint (i.e. maximum transfer capacity of the connecting 
substation in Fig.2).   
 
In this research, we also examine real-time line ratings.  The array of variables driving 
real-time line ratings includes Conductor Type 𝐶𝑇, emergency temperature rating 𝑇𝑚𝑎𝑥, 

number of conductors 𝐶𝑛, wind speed 𝑊𝑠, wind angle to the conductor 𝑊𝑎𝑛𝑔, ambient 

temperature 𝑇𝑎𝑚, solar angle 𝑆𝑎𝑛𝑔, solar absorption coefficient 𝐴 and the emissivity of 

the conductor surface over time 𝐸 as set out on the RHS of Eq.2.   
 

𝑅𝐸𝑍𝑡=𝑆𝑢𝑚
𝑅𝑇𝑅 =  𝑀𝑖𝑛 [

(2 ∙ √3 ∙  0.275 ∙ 𝑁𝑅𝑡
𝑅𝑇𝑅) ∙ 0.93,

{( √3 ∙ 0.275 ∙ 𝐸𝑅𝑡
𝑅𝑇𝑅) ∙ 0.93 + 𝐹𝐶𝐴𝑆}

𝜃𝑆𝑡𝑎𝑡𝑖𝑐 ,

] →

𝑁𝑅𝑡
𝑅𝑇𝑅 , 𝐸𝑅𝑡

𝑅𝑇𝑅 =  𝐹(𝐶𝑇, 𝑇𝑚𝑎𝑥, 𝐶𝑛,𝑊𝑠,𝑊𝑎𝑛𝑔, 𝑇𝑎𝑚, 𝑆𝑎𝑛𝑔, 𝐴, 𝐸),

 ∀ 𝑡 ∈ 𝑇
     (2) 

 
By comparison to static or seasonal limits, real-time ratings can lead to material 
increases in transfer capacity.  This is illustrated in Fig.3, where the y-axis measures line 
transfer limits and the x-axis measures wind speed. 
 
Historically, maximum line transfer limits would, by necessity, be based on conservative 
engineering assumptions and weather conditions.  A lack of real-time locational weather 
data, and the need to ensure the power system could meet critical event maximum 
demand periods required such an approach. In the case of Queensland, these 
conditions correlated with very hot, still conditions during the middle of the day (i.e. 
12:30pm) when household, commercial and industrial cooling loads would reach their 
peaks, and when the power system was reliant on coal and gas-fired generators to meet 
the prevailing maximum demand.  In Fig.3, such conditions are highlighted by the 
square-shaped black marker, and by the horizontal red line which represents the static 
(and summer seasonal) rating for a double circuit 275kV line.   
 
Real-time line ratings (hourly resolution) in Fig.3 are represented by the grey and blue 
markers.  These markers rise steadily as the windspeed rises from 0 to 3m/s (at which 
point the thermal cooling properties of wind for line ratings plateaus).  The grey markers 
represent hourly periods where ambient temperatures exceed 350C while the blue 
markers represent hourly periods where the solar angle was negative (i.e. non-solar 
periods) which implies cooler conditions – and notice that these periods also dominate 
high-wind conditions – consistent with the diurnal patterns of Queensland’s wind 
resources (as Fig.5 subsequently reveals).   
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Figure 3:   Real-Time Ratings vs Seasonal & Static Ratings 

 
Why real-time line ratings are important is because in a high-renewables grid, power 
system demand and supply conditions are distinctly different from the historic thermal 
system:   
 

1. In regions such as Queensland – which has the highest take-up rate of rooftop 
solar PV in the world – grid-supplied maximum demand has visibly shifted (blue-
shaded area, Fig.4).  While aggregate final demand still occurs at ~12:30pm, the 
‘grid-supplied’ maximum demand has shifted to ~5:30pm due to self-supply from 
rooftop solar (yellow-shaded area, Fig.4).  This time-of-day constraint no long 
matches maximum demand.  Specifically, while aggregate final demand in Fig.4 
is 12,800MW, grid-supplied load during the middle of the day is only 8800MW 
due to ~4000MW of behind-the-meter rooftop solar PV production. Real-time line 
ratings better match transfer capacity with evening periods (i.e. for planning 
purposes). 
 

2. Technology has advanced.  It is now possible to deploy low cost transmission 
line mounted’ weather stations, capable of streaming real-time weather data back 
to control rooms, meaning real-time ratings are now viable.  
 

3. REZs primarily exist to connect wind projects and as the scatter plot in Fig.3 
illustrates, higher wind speeds are associated with higher line transfer capacity.  
And as Fig.5 notes, Queensland wind resources reach their peak output during 
evening periods.  The combination of the solar angle (< 0 Degrees) and elevated 
wind speeds provides for ideal conditions vis-à-vis real-time line ratings. 
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Figure 4:   Maximum demand event in Queensland (2025) 

 
 

Figure 5:   Average Summer Wind and Solar PV output (Central Queensland) 

 
 
In our REZ Optimisation Model simulations, we will contrast the impact of static, 
seasonal and real-time line ratings on renewable generation hosting capacity, REZ cost 
allocation, and associated user charges. 
 
3.3 Wind and solar data 
Fig.5 illustrated the diurnal pattern of wind and solar in Central Queensland, which 
exhibits a level of complementarity.  Average wind output rises either side of solar PV 
output.  The hourly correlation between wind and solar is -0.42 during summer, -0.29 in 
winter and -0.43 during spring.  Even for the same technology (Wind A and Wind C in 
Fig.2, located ~50kms apart), output exhibits strong but imperfect correlation, as Fig.6 
illustrates. 
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Figure 6:   7½ years of matched wind output, adjacent locations (Central REZ) 

 
Given the complementarity of wind and solar, the optimal installed renewable plant 
capacity (MW) will exceed REZ transmission line transfer limits.  However, only time-
sequential modelling can identify the extent of diversity (see Guerra et al., 2020; Merrick 
et al., 2024), which is the main task of our REZ Optimisation Model. 
 
In doing so, we rely on 7½ years of historic hourly weather reanalysis from 2018-2025 
(drawn from Gilmore et al., 2025).  A summary of the appropriately time-matched spot 
price statistics over the same period appears in Tab.2.   
 
Table 2: Statistical summary of spot prices and dispatch-weighted prices (2025$) 

 
Source: Australian Energy Market Operator. 

 
Renewable plant capacity additions impact hourly prices differentially.  During daylight 
hours, adding solar PV has a depressing effect (i.e. merit order effect) on spot prices. 
But as Bushnell and Novan (2021) and Gonçalves and Menezes (2022) identify, spot 
prices rise in non-solar periods.  Wind output has equivalent effects.  Consistent with the 
modelling approach in Simshauser and Newbery (2024), our REZ Optimisation Model 
re-models spot prices using the hourly regression coefficients from Gonçalves and 
Menezes (2022) on a dynamic basis as wind and solar capacity levels are altered. 
Coefficients are outlined in Appendix I. 
 

 -

 100

 200

 300

 400

 500

 600

 700

 800

 900

 -  50  100  150  200  250  300  350

Wind Farm C
(900 MW)

Wind Farm A (400 MW)

Correlation: 0.76

Spot Prices 2018 2019 2020 2021 2022 2023 2024 2025 AVG
1      Time Weighted Average ($/MWh) 92.7 87.4 49.1 101.7 135.0 93.5 112.2 103.7 96.4
2      Wind Dispatch Weighted ($/MWh) 92.5 90.8 53.3 110.8 153.0 113.7 139.1 134.2 108.3
3      Wind % of Average Spot (%) 100% 104% 109% 109% 113% 122% 124% 129% 112%
4      Solar Dispatch Weighted ($/MWh) 92.1 82.9 48.3 80.6 98.3 70.5 87.8 73.2 79.8
5      Solar % of Average Spot (%) 99% 95% 98% 79% 73% 75% 78% 71% 83%
6      Negative Price Events (Hrs) 14 152 378 546 391 1156 1208 581 4426
7      90th Precentile Spot Price ($/MWh) 62.5 48.0 19.2 18.7 24.4 -19.8 -23.1 -18.7 18.9
8      10th Precentile Spot Price ($/MWh) 133.5 132.6 75.4 146.1 232.5 176.6 209.3 166.3 167.6
9      Coefficient of Variation* ($/MWh) 0.5 0.6 1.3 4.0 2.3 2.2 3.3 3.7 2.7

10    Kurtosis ($/MWh) 354.4 511.7 302.7 744.7 421.2 657.6 816.9 745.7 1,329.6
11    Skewness ($/MWh) 13.5 9.5 13.9 23.1 18.0 21.0 25.5 25.5 30.8
12    Mininum Spot Price ($/MWh) -183.0 -836.0 -688.8 -1,000.0 -62.8 -95.6 -136.6 -44.8 -1,000.0 
13    Maximum Spot Price ($/MWh) 1,615.4 2,652.1 1,551.0 17,983.3 9,903.8 9,050.0 15,747.9 13,289.7 17,983.3

* Coefficient of Variation based on hourly data (Std Dev / Time Weighted Average)
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3.4 Renewable and Storage Plant costs 
We use a commercial-grade Project & Corporate Finance Model (PCF Model) to 
produce entry cost estimates of wind, solar and utility-scale batteries.  As the title 
suggests, the model is capable of producing either on-balance sheet or project financed 
plant.  The generalised post-tax, post-financing Levelized Cost of Electricity estimates 
calculated by the model incorporate co-optimised structured finance and taxation 
variables.  Model logic, engineering and capital markets input parameters appear in 
Appendix II.  Estimated entry costs from the PCF model (excluding REZ user charges) 
are set out in Tab.3 (see Column ‘a’, Lines 1-4).  These entry cost estimates, which are 
assumed to be divisible, form a critical cost input into our REZ Optimisation Model.   
 
An important variable in the subsequent analysis is generators ‘capacity to pay’ 
connection charges.  Since the REZ under examination is a merchant asset with user 
charges paid for by connecting generators, some estimate of their reasonable capacity 
to pay is required.  For obvious reasons, a generator’s capacity to pay is not endless.  
For this purpose, we rely on the specific work undertaken by Aurecon (2025), who 
collated costs from their ‘due diligence’ reports for banking purposes across 60,000MW 
of wind, solar and battery projects in Australia’s NEM.  To summarise the results of that 
work, a generators capacity to pay connection investment costs (and the annual user 
charges that follow) trends towards 10% (-2%/+5%) of the overnight capital cost of wind 
and solar plant.  As project capacity factors rise, capacity to pay rises, and vice versa.  
Capacity to pay no doubt varies by jurisdiction, but for our purposes we will rely on 10% 
as the capacity to pay given our wind and solar capacity factors broadly align with 
market medians.  How we translate a 10% capacity to pay ‘limit’ for a wind farm is as 
follows:  
 

• The overnight capital cost of wind (per Appendix II) is $3373/kW;   

• Capacity to pay is 10% of the overnight capital cost, or $337/kW;   

• Consequently, a 1000MW wind farm has the ‘capacity to pay’ (or underwrite) 
$337m (1000MW x 337/kW) of REZ transmission infrastructure. 

• Noting user charges flow at 8.2% per annum (as specified in Section 3.13), this 
translates $337m x 8.2% ≈ $27,500 per MW per annum ($/MW/a) as illustrated in 
Tab.3, line 1, column b.  

• Given an annual capacity factor of ~34.5%, wind capacity to pay of 
$27,500/MW/a converts to a unit cost of $9.3/MWh (see line 1, column c).   

 
We repeat this process for solar PV and battery storage (Lines 2-3, column b), with 
charges converted to a unit cost ($/MWh) in column c, with the final generalised entry 
cost estimate for the three technologies appearing in column d. 
 

Table 3:  Plant entry costs4 and REZ ‘capacity to pay’ 

 
 

 
3 Recall this comprised of a 1.7% charge for O&M and 6.5% for Capital Charges at the weighted average cost of capital. 
4 These represent the “carrying cost” of the battery.  To determining the annual fixed and sunk costs of a 200MW, 
800MWh battery before REZ costs is therefore as follows: ($9.0 + 3 x $3.6) x 200 x 8760hrs = $34.7 million pa. 

($/MW/a) ($/MWh)

b c

1 Wind 27,500 9.3

2 Solar PV 10,500 4.4

3 Battery Capacity (1hr) 12,500 *1.4

4   Each +1hr Storage

* Based on 4hr battery  ** Battery cost  expressed as an hourly capacity charge in $/MW/h

Entry Costs

47.9

9.0

3.6

Unit Cost (Incl. REZ)

($/MWh)

d = (a + c)

103.2

52.3

20.0**

Unit Cost (Excl. REZ)

($/MWh)

Capacity-to-Pay

a

93.9
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Final REZ user charges will be the subject of modelled outcomes.  However, the 
capacity-to-pay parameters in Tab.3 provide a binding constraint or ‘upper bound’ to 
REZ transmission user charges.  These upper bounds naturally raise the prospect of an 
affordability gap, which we explore in Section 4. 
 
3.5 Overview of REZ Optimisation Model  
The REZ Optimisation Model ostensibly follows a form of Stackelberg setup.  A welfare 
maximising benevolent transmission planner is the leader, and renewable firms are 
followers.  The first stage involves the planner identifying the optimal mix of generation 
plant for the REZ, and sizing its infrastructure accordingly.  The second stage involves 
Nash-Cournot games amongst renewable firms in two timeframes, (i) ex-ante profit-
maximising investment in planning timeframes, and (ii) dynamic ex-post profit-
maximising dispatch in operational (hourly resolution) timeframes. 
 
REZ Optimisation model logic is grounded firmly in welfare economics.  All changes in 
producer and consumer surplus are tracked for each scenario.  Onshore renewables 
form the lowest cost producers, and transmission network hosting capacity for 
renewables is a scarce resource.5 Consequently in the model, entry occurs continuously 
until economic rents are competed away, or entry parameters of each asset class reach 
binding limits of project finance covenants, which in turn are applied by risk averse 
banks.  Incorporating this into our REZ model logic occurs as follows: 
 
Let 𝑟 ∈ 𝑅 be the set of generators, each with installed capacity 𝐾𝑟.  The REZ has 

network transfer capacity which varies according to rating regime, (𝑅𝐸𝑍𝑠𝑡𝑎𝑡𝑖𝑐,𝑆𝑒𝑎𝑠,𝑅𝑇𝑅).  

Let 𝑡 ∈ 𝑇 be the set of hourly dispatch intervals over our 7½ year simulation. In the 
model, 𝐶𝑟,𝑡 is the divisible unit cost of each generation technology regardless of scale 

($/MWh) and represents an output from our PCF Model.  Let plant availability 𝛽𝑟,𝑡 be a 

binary variable equal to an element of the set {0,1}.  Let the ex-post or actual output of 

generator 𝑟 in trading interval 𝑡 be 𝑞𝑟,𝑡 while the ex-ante ‘expected’ output be 𝑒(𝑞𝑟,𝑡), 

noting that expected output can be adversely impacted by uncertain events, viz. REZ 
transmission line congestion and negative price events which are ultimately constrained 
by a bankable curtailment rate (𝛿𝑟).  The relevant spot price for each trading interval is 

given by 𝑝𝑟,𝑡.  The objective function from this point becomes a relatively straightforward 

one: 
 

𝑂𝐵𝐽𝑊 = 𝑀𝑎𝑥 ( ∑ ∑ 𝑞𝑟,𝑡𝑟∈𝑅𝑡∈𝑇  ),       (3) 

 
S.T. 
 
∑ 𝑞𝑟,𝑡𝑟∈𝑅  ≤ 𝐾𝑟 ∙ 𝛽𝑟,𝑡 ∀ 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇,        (4) 

 

∑ 𝑞𝑟,𝑡𝑟∈𝑅 ≤ 𝑅𝐸𝑍𝑡
𝑅𝑇𝑅 ∀ 𝑡 ∈ 𝑇 | (𝑞𝑟,𝑡 = 0 𝑖𝑓 𝑝𝑟,𝑡 < 0)      (5) 

 

(∑ ∑ 𝑞𝑟,𝑡𝑟∈𝑅𝑡∈𝑇 ) ≥ [∑ ∑ (1 − 𝛿𝑟) ∙ 𝑒(𝑞𝑟,𝑡)𝑟∈𝑅𝑡∈𝑇 ] ,     (6) 

 

(∑ ∑ 𝑞𝑟,𝑡𝑟∈𝑅𝑡∈𝑇 ∙ 𝑝𝑟,𝑡) − (∑ ∑ 𝐾𝑟 ∙ 𝐶𝑟,𝑡𝑟∈𝑅𝑡∈𝑇 )  ≥ 0.     (7) 

 
The Objective Function in Eq.(3) seeks to maximise production subject to a set of 
constraints.  Wind and solar projects bid their output into the spot market at the relevant 

 
5 As noted in the introduction, transmission is costly and there are limits to augmentation applied by community 
opposition, cultural and heritage considerations, and environmental (i.e. biodiversity) constraints.  Consequently, 
transmission capacity developed for the purposes of renewable generation is a scarce resource. 
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marginal running cost (i.e. $0/MWh). Eq.(4) ensures generation dispatch is constrained 
by total plant capacity and plant availability 𝐾𝑟 ∙ 𝛽𝑟,𝑡.  Aggregate output for trading interval 

𝑡 ∈ 𝑇 is constrained by transmission line transfer limits in Eq.(5), in this case 𝑅𝐸𝑍𝑡
𝑅𝑇𝑅 

(noting 𝑅𝐸𝑍𝑡
𝑆𝑒𝑎𝑠 and 𝑅𝐸𝑍𝑡

𝑆𝑡𝑎𝑡𝑖𝑐 are also examined).  Crucially, in Eq.(6) wind and solar 

curtailment rates (𝛿𝑟) drive the difference between expected 𝑒(𝑞𝑟,𝑡) and actual output 

(𝑞𝑟,𝑡) and must not exceed exogenously determined bankability limits associated with 

contemporary project financings outlined in Appendix II as specified in Simshauser & 
Newbery (2024). Finally, any production maximising solution is constrained by normal 
returns via Eq.(7).  Renewable fleet revenues are derived by production output 𝑞𝑟,𝑡 and 

spot prices 𝑝𝑟,𝑡 with normal profit being determined by the point at which unit revenues 

meet entry costs 𝐶𝑟,𝑡 set out in Tab.3 (as derived by the PCF Model).   

 
In the model, batteries ℎ form part of the potential coalition of REZ generators such that  

ℎ, 𝑟 ∈ 𝑅.  Batteries are assumed to maximise arbitrage profit each day (𝐴𝑟𝑏ℎ,𝑑) for any 

given level of storage, 𝑗, via generating (𝑞ℎ,𝑡) at round trip efficiency (𝛾ℎ) during 

maximum daily spot market price events (𝑝𝑚𝑎𝑥𝑡), and re-charging (−𝑞ℎ,𝑡) during 

minimum spot price events (𝑝𝑚𝑖𝑛𝑡), such that 𝑞ℎ,𝑡 ∈ [−𝐾ℎ, +𝐾ℎ]. We assume batteries 

constrain their activity to one cycle per day with the optimisation ensuring the diurnal 

storage balance is met (∑ 𝑞ℎ,𝑡 = 0
𝑛
𝑡=1 ).  This is formally implemented with perfect 

foresight of day ahead spot prices. Consequently, bids and offers are dynamically solved 
each day to meet the objective function.   Any battery is assumed to sit within a 
renewable portfolio and thus in any trading interval where aggregate wind and solar 

output 𝑞𝑟,𝑡 exceeds transmission line ratings 𝑅𝐸𝑍𝑡
𝑅𝑇𝑅, the spot price for the battery during 

that interval (𝑝ℎ,𝑡) is deemed (𝑝̂ℎ,𝑡 = 0), meaning the signal to generate disappears, and 

conversely, may provide an opportunity to re-charge at a zero price unless there are 
higher value (i.e. negative prices) on the day such that: 
 
𝐴𝑟𝑏ℎ,𝑑 =

((∑ 𝑝̂𝑚𝑎𝑥ℎ,𝑡
𝑛
𝑡=1 ∙ 𝑞ℎ,𝑡 ⋅ 𝛾ℎ) + (∑ 𝑝̂𝑚𝑖𝑛ℎ,𝑡

𝑛
𝑡=1 ∙ −𝑞ℎ,𝑡)|𝑖𝑓 {

∑ 𝑞𝑟,𝑡
𝑅
𝑟=1 ≥ 𝑅𝐸𝑍𝑡

𝑠, 𝑝̂ℎ,𝑡 = 0

∑ 𝑞𝑟,𝑡
𝑅
𝑟=1 < 𝑅𝐸𝑍𝑡

𝑠, 𝑝̂ℎ,𝑡 = 𝑝ℎ,𝑡
).  

           (8) 
 
3.6 Overview of Cost Sharing Model 
Our approach to efficient and fair cost allocation amongst the final coalition of connecting 
generators, ℎ, 𝑟 ∈ 𝑅, leverages Game Theory techniques to provide a set of market-
inducing characteristics of a cost sharing solution. Game Theory is a rich theoretical 
edifice providing a versatile set of techniques which have been applied to everything, 
from apportionment methods (Shellshear, 2010) to electricity markets (Contreras, 1997).  
 
Our cost allocation approach is based on a set of desirable principles, viz. a cost sharing 
approach for the coalition of generators should fulfill and build upon principles that are 
known to produce closed-form cost sharing solutions that can be applied directly. 
 
Before we explain the desirable characteristics of a cost sharing solution, we provide 
four core principles that guide our cost sharing solution, which in turn provide the right 
incentives for generators to participate in REZs: 
 

1. REZ cost sharing should incentivize generators to co-operate as a coalition, that 
is, provide each expected generator with a better solution than if they attempt to 
act independently and should do so “fairly” in the eyes of participants, e.g. higher 
cost-incurring generators should pay more.  
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2. Any cost sharing solution for the coalition of expected generators must always 

exist irrespective of the cost profiles of each generator, because infrastructure 
costs associated with connecting each generator are not obliged to adhere to any 
specific mathematical structure (meaning our solution cannot guarantee, e.g., a 
non-empty core, excluding this solution).  
 

3. Any cost sharing solution must identify a single unique value to ensure each 
expected generator faces a binary option to join the coalition (i.e. no ex-post 
negotiations are required); and finally,  
 

4. The cost sharing solution must observe a broader capacity to pay constraint, 
meaning there is an affordability cap which may leave some of the costs 
recommended by the cost sharing protocol to be recovered from other sources. 

 
Based on the above considerations, a cooperative game theory approach makes sense 
as our problem structure is a standard cost sharing problem with a group of players, or 
rival generators, that ultimately need to be coordinated by the benevolent transmission 
network planner in a transparent manner (noting direct cooperation amongst rivals 
violates competition law). 
 
We now introduce the needed game theoretical notation. Let 𝑁 = {1, 2, 3,… , 𝑛}, 𝑛 ∈ ℕ, 

represent the set of players in the game. A coalition 𝑆 is defined as a subset of 𝑁, i.e. 
𝑆 ⊆ 𝑁. The null set is called the empty coalition and the set 𝑁 is called the grand 

coalition. A game is a pair, (𝑁, 𝑣), where 𝑣 is a real-valued function, called the 

characteristic function, defined on the subsets of 𝑁, i.e., 𝑣: 2𝑁  →  ℝ, that satisfies 𝑣(∅) =
0. The value 𝑣(𝑆) represents the value of a coalition 𝑆, which in our case is the minimal 
capital cost the coalition 𝑆 can guarantee by acting on its own and coordinating with its 
own members, irrespective of what other players and coalitions do. Another useful 
concept is that of monotonicity. A game is monotonic if for all coalitions 𝑆, 𝑇 ⊆ 𝑁, with 

𝑆 ⊆ 𝑇, implying that: 
𝑣(𝑆) ≤ 𝑣(𝑇) 

 
The cost allocation function in our game is defined by the cost of the minimum 
transmission infrastructure required to serve the coalition of generators, noting such a 
definition means the game is monotonic. Specifically, we have a set of players, ℎ, 𝑟 ∈ 𝑅, 
and we number them, 𝑁 = {1,… , 𝑛} where 𝑛 = |𝑅|. For a coalition 𝑆, let 𝐶(𝑆) be defined 

as the minimum cost infrastructure required to connect the generators in 𝑆 to the REZ 
including the REZ costs. The coalition function v is then defined as 𝑣(𝑆) ≔ 𝐶(𝑆). This 

defines a game (𝑁, 𝑣). The minimum infrastructure costs are provided below in the 
Model Results section. 
 
A cost allocation rule is a function, 𝜙(𝑁, 𝑣)  →  ℝ𝑛, defined on a game (𝑁, 𝑣) which 

assigns to each player a cost share, 𝜙𝑖(𝑁, 𝑣) ∈  ℝ  to each player 𝑖 ∈ 𝑁 such that, 
 
∑ 𝜙𝑖(𝑁, 𝑣)𝑖 ∈𝑁 = 𝑣(𝑁).        (9) 
  
In the following we supress the (𝑁, 𝑣) in our solution notation as the specific game will 

always be clear. In addition, we will write 𝜙(𝑆) ≔ ∑ 𝜙𝑖𝑖 ∈𝑆 . Based on the two principles 
above, our solution concepts must be defined for all games and satisfy the following 
constraint: 
 
𝜙𝑖 ≤ 𝑣(𝑖), 𝑖 ∈ 𝑁.        (10) 
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Any vector satisfying the previous constraint and 𝜙(𝑁) = 𝑣(𝑁) from Eq.(9) is called an 
imputation. 
 
When allocating REZ costs, we have a number of desirable or ‘optimal’ criteria that any 
solution should fulfill. These desirable properties are as follows (note there are other 
criteria such as anonymity which may or may not be required, hence are not included 
below): 
 

1. Individual Rationality: Each generator should pay less than what it would cost 
them were they to act in isolation per Eq.(9).  
 

2. Linear:  For each REZ, the cost allocation should be additive across other zones, 
i.e. for each REZ sub-game, the combined cost solutions should be linear.  
 

3. Dummy generator: if a generator causes no cost, it should not be charged 
anything. 

 
4. Efficiency: The sum of costs allocated to generators should equal the total cost, 

i.e. no cost should not be covered, and the sum of allocated costs should not 
exceed total costs per Eq.(10). 
 

5. Symmetry: Generators with identical cost profiles should have the same solution 
value, i.e. for 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, if 𝑣(𝑆 ∪ 𝑖) = 𝑣(𝑆 ∪ 𝑗) ∀ 𝑆 ⊆ 𝑁, 𝑖, 𝑗 ∉ 𝑆, then 𝜙𝑖 = 𝜙𝑗.  

 
6. Monotonicity: Generators with higher transmission network requirements should 

pay more, i.e. if 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, if 𝑣(𝑆 ∪ 𝑖)  ≤  𝑣(𝑆 ∪ 𝑗) ∀ 𝑆 ⊆ 𝑁, 𝑖, 𝑗 ∉ 𝑆, then 𝜙𝑖 ≤
 𝜙𝑗. 

 
These six criteria are considered highly desirable, to which one could add further criteria 
such as 𝜙(𝑆) ≤ 𝑣(𝑆).  However, by adding this additional criterion we violate our second 
core principle above, that a solution always exists (an imputation that satisfies this 
additional condition belongs to the core, which is empty for some games). By keeping 
the above six criteria, we are able to guarantee a suitable solution concept that always 
exists and has a simple expression and intuitive interpretation, the Shapley value, and it 
also fulfills our four core principles. 
 
The Shapley value is defined for a game (𝑁, 𝑣) as follows: 
 

𝜙𝑖 = ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
(𝑣(𝑆 ∪ 𝑖) − 𝑣(𝑆))𝑆 ⊆𝑁\𝑖 ,      (11) 

 
where |𝑆| stands for the cardinality of 𝑆. It is known that the Shapley value fulfills the six 
criteria above (Hougaard, 2009) and can be interpreted as a type of average across a 
particular contribution by a connecting generator to a coalition of connecting generators, 
independent of the way that the generator joins the REZ coalition. 
 
Other solutions such as the core, von Neumann-Morgenstern set, nucleolus, kernel, tau 
value (Hoougard, 2009) and others may also be relevant.  However, each of these 
options was rejected for the following reasons: 
 

• The core: it is not guaranteed to be non-empty as mentioned above. 
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• The von Neumann-Morgenstern set: it is not guaranteed to be non-empty. 
 

• The nucleolus: we are not interested in the excesses of each coalition and trying 
to maximise them as this is not a realistic aspect of our model given geographical 
limitations – that is, generators either join the REZ or not, and cannot form 
another sub-coalition given community and environmental limits (i.e. of 
developing transmission assets). 
 

• The kernel: although it always exists, it does not provide a unique payoff 
outcome, however, a set of outcomes, hence violating one of our principles. 
 

• The tau value is defined on the set of quasi-balanced games and so is not 
defined for all games. In addition, it does not satisfy another possible desirable 
property called aggregate monotonicity (i.e. if the value of the grand coalition 
increases while all other coalitions remain the same, then no generator should 
get less than before) as well as not necessarily satisfying individual rationality 
(Hoougard, 2009). 

 
We apply the Shapley value in our Model Results section given its desirable properties 
and ease of calculation for games with a small number of generators, as is invariably the 
case with REZs. 
 
4. Model Results 

Recall from Fig.5 that a defining characteristic of Queensland renewables is the 
complementarity of wind and solar resources.  This makes for an interesting case study 
because the efficient level of connecting generation capacity (MW) will always exceed 
REZ line transfer capacity given the NEM’s open access, multi-zonal market setup.  We 
model three REZ scenarios (1) static, (2) seasonal, and (3) real-time line ratings.   
 
4.1 Scenario 1:  optimal renewables with static line ratings 
In our REZ, entry is assumed to occur under conditions of the NEMs ‘Open Access’ 
regime, meaning renewable plant curtailment in any trading interval is shared amongst 
the coalition members on a volume-weighted basis, with the zonal spot price prevailing.  
There are no side-payments when plant is constrained-off. This places a considerable 
burden on renewable investors to predict market congestion conditions because the risk 
of curtailment cannot be re-allocated to consumers.  
 
Using data outlined in Section 3, we run our REZ Optimisation Model through 100 
iterations to identify the optimal mix of wind and solar PV.  We opt for 100 iterations due 
to the nonlinearity of the problem given the rich blend of resources, line ratings, merit 
order effects, curtailment and storage options.  And due to the non-smooth nature of 
certain constraints and properties, we rely on an evolutionary algorithm to find optimal 
solutions.  As results illustrate in Fig.7, there are multiple credible equilibria across the 
five entrant projects vis-à-vis size and scale.   
 
A logical line of inquiry is whether the existence of multiple equilibria might create too 
much uncertainty for renewable investors to commit within the REZ.  Yet a close 
inspection of Fig.2, and of Fig.7, reveals that: 
 

1. In practice, the number of potential projects, and potential project sites, is 
known by the transmission planner – see Fig.2.  What is uncertain is the 
final capacity of wind and solar projects in aggregate; 
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2. In Fig.7 (y-axis), all iterations involved a minimum level of wind 
(~1800MW) and tend to cluster around 1950MW; 
 

3. Similarly, in Fig.7 (x-axis), all iterations involved a minimum level of solar 
(~650MW) and cluster around 850-875MW; and 
 

4. at a 10% Probability of Exceedance (PoE10), which in a sense reflects an 
upper limit optimal results, iterations typically comprise ~1950MW of wind, 
and ~875MW of solar.  

Consequently, while there may be some level of plant mix uncertainty at the very 
margins, the number of sites is fixed, and iterations trended towards at least 1800MW of 
wind, and 850MW of solar.  And in practice, any wind and solar plant capacity above 
these levels face no more risk than any other project in the NEM’s open access regime.   
 
The binding constraint in this set of iterations is renewable plant curtailment (i.e. ‘spill) 
due to line congestion.  Some level of curtailment inside a REZ is efficient.  But in 
practice, there are ‘tolerable limits’ to curtailment applied by risk-averse project banks 
and risk-neutral equity investors.  Recall the REZ Optimisation model incorporates a 
variable for this purpose, viz. the curtailment constraint (𝛿𝑟) in Eq.(6).  For our purposes, 
as outlined in Appendix II we have set (𝛿𝑟) to ≤ 5.25% for wind entrants and ≤ 8% for 
solar PV entrants, consistent with the assumptions in Simshauser and Newbery (2024).  
In Fig.7, Eq.(6) is binding for wind and solar entrants, which in turn regulates entry to 
1950MW of wind, and 875MW of solar (at PoE10). 
 

Figure 7:   REZ static line ratings – optimal wind capacity vs. solar PV capacity 

 
 
Fig.7 contrasted 100 iteration results from the REZ model by examining wind capacity 
(y-axis) and solar capacity (x-axis).  In Fig.8, we take the same set of results and 
illustrate 100 iterations of production output (GWh) on the y-axis, and on the x-axis, we 
combine wind and solar capacity (MW).  What this shows is that, although there appears 
to be some variation in the plausible mix of wind and solar (per Fig.7), the annual 
production from those combinations lies within a tight range, viz. 7160GWh +/-1%.  
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Figure 8:   REZ static line ratings – energy (GWh) vs renewable capacity (MW) 

 
 
Our allocation of REZ user charges underpinning Figs.7-8 are presented in Tab.4.  The 
various power projects are listed from Lines 1-6 (note Entrant E ‘Battery’ = 0).  Capacity 
(MW) appears in column ‘a’, while ‘capacity to pay’ user charges are listed in columns ‘b’ 
and ‘c’.  Column ‘d’ is included only by way of historic reference to prior research i.e. 
user charges levied by way of simple output allocation (i.e. MWh output).  The contrast 
with Shapley Values (column ‘e’) is striking.  Column ‘f’ notes there is a capacity to pay 
shortfall of $9.9m pa, and when applied on a project-by-project basis using the minimum 
of the Shapley Value and capacity to pay, user charges amount to only 78% (column g) 
of the breakeven cost of $73m (column e, line 7).   
   

Table 4:   REZ Shapley Values (Static Line Ratings) 

 
 
Prima facie, results in Tab.4 suggest the merchant REZ is financially intractable.  If there 
were no investment alternatives, and the REZ was nonetheless considered welfare 
enhancing, there are policy levers available to overcome such shortfalls and these will 
be discussed in Section 5.  For now, variations to transmission line ratings are feasible, 
which may bridge the apparent gap that exists in Tab.4.  This leads us to Scenario 2, 
and the impact of moving from static to seasonal line ratings. 
 
4.2 Scenario 2:  optimal renewables with seasonal line ratings 
In Scenario 2, we alter our line ratings in the mild and winter seasons as outlined in 
Tab.1.  This means in winter, line transfer capacity increases to 1916MW and in the mild 
seasons, to 1756MW.  Our summer rating remains at the static rating of 1536MW.  
Fig.9, presents the optimal combinations of wind solar, and at PoE10 equates to 
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1 Project A Wind 400 MW $27,500 11.0 10.6 6.7 4.3

2 Project B Solar 400 MW $10,500 4.2 8.7 2.5 1.7

3 Project C Wind 900 MW $27,500 24.8 25.2 32.8 -8.1

4 Project D Solar 500 MW $10,500 5.3 10.9 7.0 -1.7

5 Project E Battery 0 MW $12,500 0.0 0.0 0.0 0.0

6 Project F Wind 650 MW $27,500 17.9 17.6 24.0 -6.1

7 TOTAL $63.1 $73.0 $73.0 -$9.9 78%

$6.0

-$9.8
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2225MW of wind (+275MW more than static line ratings, with no change to solar).  Such 
results reflect the fact that the additional line transfer capacity coincides with windy 
conditions (Fig.3).  
 

Figure 9:   REZ seasonal line ratings – optimal wind vs. solar PV  

 
 
The productivity of the REZ has increased commensurately, with no change to 
infrastructure costs.  Fig.10 illustrates that energy output has increased by 11%, from 
7200 to 8000GWh. 
 

Figure 10:   REZ seasonal line ratings – energy (GWh) vs capacity 

 
 
The change from static to seasonal line ratings is welfare enhancing, as depicted in 
Tab.5 (+$149.3m pa).  Consumer welfare increases by $72.4m.  Consumers prefer the 
more productive REZ because the fixed costs of transmission investment are spread 
across more units of output. Additionally, recall onshore wind and solar PV are lowest 
cost entrants in the NEM, and exhibit marginally lower entry costs with a more 
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productive REZ.  Producer surplus also rises, albeit with mixed results as a class.  Wind 
producers may develop projects that would otherwise be stranded ($86.1m).  Solar 
producers ($-1.2m) face marginally more congestion with additional wind entering the 
REZ, albeit this remains within acceptable or ‘tolerable’ banking limits.  And finally, 
differential merit order effects arise from the entry of wind and solar which, in aggregate, 
result in wealth transfers from producers to consumers ($8.1m). 
 

Table 5:  Welfare analysis (static vs seasonal line ratings) 

 
 
REZ user charges underpinning Figs.9-10 are presented in Tab.6.  As with static line 
ratings, capacity to pay is binding for generators C, D and F, but are moving closer to 
our Shapley Values.  The cost recovery ratio has increased from 78 to 88%.   
 

Table 6:   REZ Shapley Values (Seasonal Line Ratings) 

 
 
Our next Scenario examines the impact of moving from seasonal to real-time line 
ratings. 
 
4.3 Scenario 3:  optimal renewables with real-time line ratings 
Scenario 3 simulates real-time line ratings.  This has profound effects on the renewable 
hosting capacity, the energy output and REZ productivity generally.  Fig.11 illustrates the 
change in the optimal capacity mix, with wind rising to 3275MW, and solar PV rising to 
1425MW.   
   
  

Static Ratings vs Seasonal Line Ratings

($ Million pa)

1 Chg in Consumer Surplus 72.4

2 Chg in Producer Surplus (Wind) 86.1

3 Chg in Producer Surplus (Solar) -1.2 

4 Wealth Transfers -8.1 

5 Gross Chg in Producer Surplus 76.9

6 Change in Total Welfare (1+5) 149.3

Seasonal Line Ratings Capacity Capacity to Pay Capacity to Pay Output Shapley Value Surplus Recovery

(MW) ($/MW) ($M) ($M) ($M) ($M) (%)

Capex = $890m a b c = (a x b) d e f = (c - e) g =∑min(e,c) ÷ ∑e

8 Project A Wind 400 MW $27,500 11.0 9.5 6.2 4.8

9 Project B Solar 500 MW $10,500 5.3 9.8 3.0 2.3

10 Project C Wind 1,000 MW $27,500 27.5 25.2 34.5 -7.0

11 Project D Solar 400 MW $10,500 4.2 7.8 5.3 -1.1

12 Project E Battery 0 MW $12,500 0.0 0.0 0.0 0.0

13 Project F Wind 850 MW $27,500 23.4 20.6 24.0 -0.6

14 TOTAL $71.3 $73.0 $73.0 -$1.7 88%

$7.0

-$8.1
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Figure 11:   REZ real-time line ratings – optimal wind vs. solar PV 

 
Fig.12 highlights the change in REZ productivity, with output rising by 50% to 
12,000GWh. 
 

Figure 12:   REZ real-time line ratings – energy (GWh) vs capacity 

 
 
Welfare analysis similarly reveals material changes, with consumer surplus up $323.7m.  
Both wind and solar producer surplus increases, although to be clear, there are mixed 
results for solar producers with (1) initial incumbents slightly worse off, but (2) otherwise 
stranded resources able to be monetised with the net gain being +$62.2m. Wealth 
transfers from producers to consumers arising from merit order effects amounts to   
-$18.6m. 
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Table 7:  Welfare analysis (static vs real-time line ratings) 

 
 
Perhaps the main result from this scenario is that generator capacity to pay now 
exceeds the REZ annual charges and the Shapley Value of each entrant, as illustrated 
in Tab.8. 
 

Table 8:   REZ Shapley Values (real-time line ratings) 

 
 
 
4.4 Does battery storage matter? 
In each of Scenarios 1-3, batteries were excluded.  Given intermittency, the addition of 
battery storage should facilitate additional entry, increase REZ productivity, and enhance 
REZ cost recovery.  However, while optimisation results show gains across all REZ 
transmission line rating scenarios are positive, they are marginal and decrease with line 
rating capacity.  This is illustrated in Fig.13.    
 

Figure 13:   REZ productivity – impact of line ratings and batteries 

 
 

Static Ratings vs Real-Time Ratings

($ Million pa)

1 Chg in Consumer Surplus 323.7

2 Chg in Producer Surplus (Wind) 385.2

3 Chg in Producer Surplus (Solar) 62.2

4 Wealth Transfers -18.6 

5 Gross Chg in Producer Surplus 428.8

6 Change in Total Welfare (1+5) 752.4

Real-Time Line Ratings Capacity Capacity to Pay Capacity to Pay Output Shapley Value Surplus Recovery

(MW) ($/MW) ($M) ($M) ($M) ($M) (%)

Capex = $890m a b c = (a x b) d e f = (c - e) g =∑min(e,c) ÷ ∑e

22 Project A Wind 750 MW $27,500 20.6 12.1 6.7 13.9

23 Project B Solar 750 MW $10,500 7.9 9.9 2.5 5.3

24 Project C Wind 1,200 MW $27,500 33.0 20.4 33.0 0.0

25 Project D Solar 650 MW $10,500 6.8 8.6 6.8 0.0

26 Project E Battery 0 MW $12,500 0.0 0.0 0.0 0.0

27 Project F Wind 1,350 MW $27,500 37.1 22.1 24.0 13.1
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Note in Fig.13 that within the REZ optimisation model, 4h batteries dominated iterations, 
with optimal battery capacity trending towards 400-575MW. Batteries had the effect of 
increasing REZ productivity by ~3.3-5.3%.  Larger gains were extracted through 
pursuing real-time line ratings, with the shift from static to seasonal line ratings (+5.7%), 
and from seasonal to real-time line ratings (+44.2%).  Fig.14 overlays the iteration 
results for the battery cases relevant to the non-battery cases. 
 

Figure 14:   REZ energy (GWh) with battery storage 

 
It is to be noted that oversized batteries would reverse these results (see in particular 
Simshauser, 2025).  Specifically, oversized batteries compete with wind and solar for 
REZ access, and this would have the effect of reducing the generation fleet’s capacity to 
pay. 
 
5. Policy implications 

Our analysis demonstrated the gains from altering REZ line transfer capacity, from 
static, to seasonal and finally, to real-time ratings.  Batteries enhanced REZ productivity, 
but by comparison to line ratings, gains were marginal and diminishing in nature.  
Historically, establishing real-time line ratings was costly.  This is no longer the case.  An 
emerging set of low-cost technologies now exists, including transmission line-mounted 
weather stations, making real-time ratings viable.  Evidently, for existing power systems 
with thermally constrained transmission lines and credible renewable resources, this 
should form a priority for investment.  It is to be noted that not all transmission lines are 
thermally constrained – often other constraints emerge (e.g. voltage stability, transient 
stability limits etc).  However, where lines are thermally constrained, real-time ratings 
offer great potential at a very low marginal cost. 
 
In prior REZ research in the Australian context, user charges (i.e. REZ cost allocation) 
was simplified and based on output.  The focus of analysis was on deriving the optimal 
mix of plant.  A quick review of Table results (Tabs.4, 6, 8) in Section 4 reveals there 
was no scenario in which an output-based cost allocation method was tractable for solar 
PV projects.  Yet we know its role in the energy transition to be crucial.  To that end, we 
combined a mix of renewable and battery resources, and different line rating 
methodologies with the Shapley Value method to identify an efficient, fair and 
defendable set of user charges for generators connecting to a merchant REZ.  And 
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importantly, we did so by introducing capacity to pay limits reflective of conditions in the 
Australian market.   
 
For low cost transmission augmentations, capacity to pay limits are unlikely to be a 
problem.  This was the experience with early REZs in the NEM’s Queensland region.  
However, as with all scarce resources, there is an upward sloping supply curve for 
Renewable Energy Zones.  As distances rise, and as costs increase, user charges rise 
making financial tractability of REZs more difficult to navigate on a purely merchant 
basis.   
 
In the present exercise with static and seasonal line ratings, our Shapley Values (and by 
definition, an output allocation method) faced binding capacity-to-pay constraints.  In the 
static line rating scenario, cost recovery was ~78%. This rose to 88% with seasonal line 
ratings.  Adding storage, while not specifically identified, added ~2 percentage points to 
these cost recovery ratios.  It was not until we introduced real-time ratings, which 
materially increased renewable hosting capacity, were we able to navigate the capacity 
to pay problem.   
 
This raises a tangential policy issue.  What if some other network limitation (e.g. 
transient stability limit) constrained line ratings such the full capacity of real-time ratings 
was not viable?  Would this be fatal for a merchant REZ?  The short answer is, on a 
purely merchant basis, more than likely.  However, other policy options exist that migrate 
the REZ to a semi-merchant model if, and only if, the overall portfolio of projects is 
welfare enhancing at the whole-of-system level.  These policy options include:   
 

1. Concessional finance, which can be deployed to lower the aggregate annual user 
charges.  Concessional agencies are quite common, and Australia has the 
‘Clean Energy Finance Corporation’ which exists for this purpose.  Concessional 
finance would have the effect of lowering the cost of capital, and in turn, user 
charges holding all else equal.   
 

2. Allocating some component of project capital costs to the Regulatory Asset Base.  
Specifically, where a residual transmission investment cost may exist within a 
REZ program, and the overall program of transmission, wind, solar and storage 
investments are otherwise thought to be beneficial, allocation to the Regulatory 
Asset Base provides a suitable pathway.  This allocation may be transient to deal 
with uncertainty of the timing of renewable project entry, or permanent where a 
residual exists.  After all, this policy represents the default policy for 100% cost 
recovery in most jurisdictions.  

 
6. Conclusion 

Development of REZ in Australia's NEM represents a critical policy initiative aimed at 
facilitating the energy transition in an efficient manner. REZ are designed to coordinate 
multiple renewable projects that would otherwise act independently, thereby minimizing 
marginal transmission costs, and the various community, environmental, and cultural 
sensitivities associated with large-scale infrastructure development.  Queensland's 
approach to REZ development, characterized by a merchant model, has enabled rapid 
deployment of renewable projects.  Its distinctive feature is that connecting generators, 
not consumers, underwrite the capital cost through annual user charges. 
 
When renewable entry is perfect and REZ distances are small, investment commitment 
by a risk neutral benevolent transmission planner is clear cut.  As REZ distances are 
extended from the transmission backbone, capital costs rise, and user charges may 
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exceed generators reasonable capacity to pay.  Maximising the renewable hosting 
capacity of a REZ is therefore an important means by which to navigate such 
constraints.  And, other policy options exist to deal with any residual shortfall. 
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Appendix I:  Goncalves & Menezes (2022) NEM spot price coefficients 
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Appendix II – PCF Model Logic 
 
In the PCF Model, prices and costs increase annually by a forecast general inflation rate 
(CPI).   
 

𝜋𝑗
𝑅,𝐶 = [1 + (

𝐶𝑃𝐼

100
)]
𝑗
 ,         (1)      

 

Energy output 𝑞𝑗
𝑖  from each plant (i) in each period (j) is a key variable in driving revenue 

streams, unit fuel costs, fixed and variable Operations & Maintenance costs.  Energy 

output is calculated by reference to installed capacity 𝑘𝑖, capacity utilisation rate 𝐶𝐹𝑗
𝑖 for 

each period j.  Plant auxiliary losses 𝐴𝑢𝑥𝑖 arising from on-site electrical loads are 

deducted.  Plant output is measured at the Node and thus a Marginal Loss Factor 𝑀𝐿𝐹𝑖 
coefficient is applied.    
 

𝑞𝑗
𝑖 = 𝐶𝐹𝑗

𝑖. 𝑘𝑖. (1 − 𝐴𝑢𝑥𝑖).𝑀𝐿𝐹𝑖,       (2) 

 

A convergent electricity price for the ith plant (𝑝𝑖𝜀) is calculated in year one and 

escalated per Eq. (1).  Thus, revenue for the ith plant in each period j is defined as 
follows: 
 

𝑅𝑗
𝑖 = (𝑞𝑗

𝑖 . 𝑝𝑖𝜀 . 𝜋𝑗
𝑅),         (3) 

 
If thermal plants are to be modelled, marginal running costs need to be defined per Eq. 

(4).  The thermal efficiency for each generation technology 𝜁𝑖 is defined.  The constant 

term ‘3600’6 is divided by 𝜁𝑖 to convert the efficiency result from % to kJ/kWh.  This is 

then multiplied by raw fuel commodity cost 𝑓𝑖.  Variable Operations & Maintenance costs 

𝑣𝑖, where relevant, are added which produces a pre-carbon short run marginal cost.   
 
Under conditions of externality pricing 𝐶𝑃𝑗, the CO2 intensity of output needs to be 

defined.  Plant carbon intensity 𝑔𝑖 is derived by multiplying the plant heat rate by 

combustion emissions 𝑔̇𝑖 and fugitive CO2 emissions 𝑔𝑖.  Marginal running costs in the jth 
period is then calculated by the product of short run marginal production costs by 

generation output 𝑞𝑗
𝑖  and escalated at the rate of 𝜋𝑗

𝐶. 

 

𝜗𝑗
𝑖 = {[(

(3600
𝜁𝑖⁄ )

1000
. 𝑓𝑖 + 𝑣𝑖) + (𝑔𝑖. 𝐶𝑃𝑗)] . 𝑞𝑗

𝑖 . 𝜋𝑗
𝐶|𝑔𝑖 = (𝑔̇𝑖 + 𝑔𝑖).

(3600
𝜁𝑖⁄ )

1000
},  (4) 

 

Fixed Operations & Maintenance costs 𝐹𝑂𝑀𝑗
𝑖 of the plant are measured in $/MW/year of 

installed capacity 𝐹𝐶𝑖 and are multiplied by plant capacity 𝑘𝑖 and escalated.   
 

𝐹𝑂𝑀𝑗
𝑖 = 𝐹𝐶𝑖 . 𝑘𝑖. 𝜋𝑗

𝐶 ,         (5)  

 
Earnings Before Interest Tax Depreciation and Amortisation (EBITDA) in the jth period 
can therefore be defined as follows: 
 

𝐸𝐵𝐼𝑇𝐷𝐴𝑗
𝑖 = (𝑅𝑗

𝑖 − 𝜗𝑗
𝑖 − 𝐹𝑂𝑀𝑗

𝑖),       (6) 

 
6
 The derivation of the constant term 3,600 is: 1 Watt = 1 Joule per second and hence 1 Watt Hour = 3,600 

Joules. 
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Capital Costs (𝑋0
𝑖) for each plant i are Overnight Capital Costs and incurred in year 0.  

Ongoing capital spending (𝑥𝑗
𝑖) for each period j is determined as the inflated annual 

assumed capital works program. 
 

𝑥𝑗
𝑖 = 𝑐𝑗

𝑖. 𝜋𝑗
𝐶 ,          (7) 

 

Plant capital costs 𝑋0
𝑖  give rise to tax depreciation (𝑑𝑗

𝑖) such that if the current period was 

greater than the plant life under taxation law (L), then the value is 0.  In addition, 𝑥𝑗
𝑖 also 

gives rise to tax depreciation such that: 
 

𝑑𝑗
𝑖 = (

𝑋0
𝑖

𝐿
) + (

𝑥𝑗
𝑖

𝐿−(𝑗−1)
),         (8) 

 

From here, taxation payable (𝜏𝑗
𝑖) at the corporate taxation rate (𝜏𝑐) is applied to 

 𝐸𝐵𝐼𝑇𝐷𝐴𝑗
𝑖  less Interest on Loans (𝐼𝑗

𝑖) later defined in (16), less 𝑑𝑗
𝑖.  To the extent (𝜏𝑗

𝑖) 

results in non-positive outcome, tax losses (𝐿𝑗
𝑖) are carried forward and offset against 

future periods. 
 

𝜏𝑗
𝑖 = 𝑀𝑎𝑥(0, ( 𝐸𝐵𝐼𝑇𝐷𝐴𝑗

𝑖 − 𝐼𝑗
𝑖 − 𝑑𝑗

𝑖 − 𝐿𝑗−1
𝑖 ). 𝜏𝑐),      (9) 

 

𝐿𝑗
𝑖 = 𝑀𝑖𝑛(0, ( 𝐸𝐵𝐼𝑇𝐷𝐴𝑗

𝑖 − 𝐼𝑗
𝑖 − 𝑑𝑗

𝑖 − 𝐿𝑗−1
𝑖 ). 𝜏𝑐),      (10) 

 
Relevant inputs are as follows: 
 

Table A1: Plant Technical & Cost Assumptions (pre-REZ costs) 

 
Source: Gohdes (2022, 2023).  

 
 
The debt financing model computes interest and principal repayments on different debt 
facilities depending on the type, structure and tenor of tranches.  There are two types of 
debt facilities – (a) corporate facilities (i.e. balance-sheet financings) and (2) project 
financings.  Debt structures available in the model include bullet facilities and semi-
permanent amortising facilities (Term Loan B and Term Loan A, respectively).   
 
Corporate Finance typically involves 5- and 7-year bond issues with an implied ‘BBB’ 
credit rating.  Project Finance include a 5-year Bullet facility requiring interest-only 
payments after which it is refinanced with consecutive amortising facilities and fully 

Table 1A - Renewable Fleet Wind Solar Battery

  Project Capacity (MW) 1,000 400 400

   - Storage Capacity (Hrs) - - 4

  Overnight Capital Cost ($/kW) 3,373 1,133 525

   - Storage ($/kWh) - - 380

   - Contingency 10% - -

  Plant Capital Cost ($ M) 3,710 453 409

  Operating Life (Yrs) 35 30 20

  Annual Capacity Factor (%) 33-43% 21-27% 14.7%

  Transmission Loss Factor (MLF) 0.970 0.950 1.000

  Transmission REZ Costs ($/MW/a) Modelled

  Fixed O&M ($/MW/a) 25,000 20,000 10,000

  Variable O&M ($/MWh) 0.0 0.0 0.0

  FCAS (% Rev) -1.0% -1.0% 4.0%
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amortised over an 18-25 year period (depending on the technology) and a second facility 
commencing with tenors of 5-12 years as an Amortising facility set within a semi-
permanent structure with a nominal repayment term of 18-25 years.  The decision tree 
for the two Term Loans was the same, so for the Debt where 𝐷𝑇 = 1 or 2, the calculation 
is as follows: 
 

𝑖𝑓 𝑗 {
> 1, 𝐷𝑇𝑗

𝑖 = 𝐷𝑇𝑗−1
𝑖 − 𝑃𝑗−1

𝑖

= 1,𝐷𝑇1
𝑖 = 𝐷0

𝑖 . 𝑆                  
        (11) 

 

𝐷0
𝑖  refers to the total amount of debt used in the project.  The split (S) of the debt 

between each facility refers to the manner in which debt is apportioned to each Term 
Loan facility or Corporate Bond.  In most model cases, 35% of debt is assigned to Term 

Loan B and the remainder to Term Loan A.  Principal 𝑃𝑗−1
𝑖  refers to the amount of 

principal repayment for tranche T in period j and is calculated as an annuity: 
 

𝑃𝑗
𝑖 =

(

 
 
 

𝐷𝑇𝑗
𝑖

[
 
 
 1−(1+(𝑅𝑇𝑗

𝑧 +𝐶𝑇𝑗
𝑧 ))

−𝑛

𝑅𝑇𝑗
𝑧 +𝐶𝑇𝑗

𝑧

]
 
 
 |

|
𝑧 {
= 𝑉𝐼
= 𝑃𝐹

)

 
 
 

       (12) 

 
In (12), 𝑅𝑇𝑗 is the relevant interest rate swap (5yr, 7yr or 12yr) and 𝐶𝑇𝑗 is the credit 

spread or margin relevant to the issued Term Loan or Corporate Bond.  The relevant 

interest payment in the jth period (𝐼𝑗
𝑖) is calculated as the product of the (fixed) interest 

rate on the loan or Bond by the amount of loan outstanding: 
 

𝐼𝑗
𝑖 = 𝐷𝑇𝑗

𝑖 × (𝑅𝑇𝑗
𝑧 + 𝐶𝑇𝑗

𝑧 )        

 (13) 
 

Total Debt outstanding 𝐷𝑗
𝑖, total Interest 𝐼𝑗

𝑖  and total Principle 𝑃𝑗
𝑖 for the ith plant is 

calculated as the sum of the above components for the two debt facilities in time j.  For 

clarity, Loan Drawings are equal to 𝐷0
𝑖  in year 1 as part of the initial financing and are 

otherwise 0.   
 

One of the key calculations is the initial derivation of 𝐷0
𝑖  (as per eq.11).  This is 

determined by the product of the gearing level and the Overnight Capital Cost (𝑋0
𝑖).  

Gearing levels are formed by applying a cash flow constraint based on credit metrics 
applied by project banks and capital markets.  The variable 𝛾 in our PF Model relates 
specifically to the legal structure of the business and the credible capital structure 
achievable.  The two relevant legal structures are Vertically Integrated (VI) merchant 
utilities (issuing ‘BBB’ rated bonds) and Independent Power Producers using Project 
Finance (PF).  
 

𝑖𝑖𝑓 𝛾

{
 
 

 
        = 𝑉𝐼,

𝐹𝐹𝑂𝑗
𝑖

𝐼𝑗
𝑖 ≥ 𝛿𝑗

𝑉𝐼∀ 𝑗 |
𝐷𝑗
𝑖

𝐸𝐵𝐼𝑇𝐷𝐴𝑗
𝑖 ≥ 𝜔𝑗

𝑉𝐼∀ 𝑗 |𝐹𝐹𝑂𝑗
𝑖 = (𝐸𝐵𝐼𝑇𝐷𝐴𝑗

𝑖 − 𝑥𝑗
𝑖)                                                         

= 𝑃𝐹,𝑀𝑖𝑛(𝐷𝑆𝐶𝑅𝑗
𝑖 , 𝐿𝐿𝐶𝑅𝑗

𝑖) ≥ 𝛿𝑗
𝑃𝐹 , ∀ 𝑗  | 𝐷𝑆𝐶𝑅𝑗 =

(𝐸𝐵𝐼𝑇𝐷𝐴𝑗
𝑖−𝑥𝑗

𝑖−𝜏𝑗
𝑖)

𝑃𝑗
𝑖+𝐼𝑗

𝑖  |𝐿𝐿𝐶𝑅𝑗 =
∑ [(𝐸𝐵𝐼𝑇𝐷𝐴𝑗

𝑖−𝑥𝑗
𝑖−𝜏𝑗

𝑖).(1+𝐾𝑑)
−𝑗]𝑁

𝑗=1

𝐷𝑗
𝑖   

 (14) 
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Credit metrics7 (𝛿𝑗
𝑉𝐼) and (𝜔𝑗

𝑉𝐼) are exogenously determined by credit rating agencies 

and are outlined in Table 2.  Values for 𝛿𝑗
𝑃𝐹 are exogenously determined by project 

banks and depend on technology (i.e. thermal vs. renewable) and the extent of energy 
market exposure, that is whether a Power Purchase Agreement exists or not.  For 

clarity, 𝐹𝐹𝑂𝑗
𝑖 is ‘Funds From Operations’ while 𝐷𝑆𝐶𝑅𝑗

𝑖 and 𝐿𝐿𝐶𝑅𝑗
𝑖 are the Debt Service 

Cover Ratio and Loan Life Cover Ratios.  Debt drawn is: 
 

𝐷0
𝑖
= 𝑋0

𝑖 − ∑ [𝐸𝐵𝐼𝑇𝐷𝐴𝑗
𝑖 − 𝐼𝑗

𝑖
−𝑃𝑗

𝑖
− 𝜏𝑗

𝑖] . (1 + 𝐾𝑒)
−(𝑗)𝑁

𝑗=1 − ∑ 𝑥𝑗
𝑖 . (1 + 𝐾𝑒)

−(𝑗)𝑁
𝑗=1        (15) 

 
Relevant inputs are as follows:  
 

Table A2: Project Finance Parameters 

 
 

 
Source: Gohdes (2022, 2023), Bloomberg.  

 
 
 
 
At this point, all of the necessary conditions exist to produce estimates of the long run 
marginal cost of power generation technologies along with relevant equations to solve 

for the price (𝑝𝑖𝜀) given expected equity returns (𝐾𝑒) whilst simultaneously meeting the 

constraints of 𝛿𝑗
𝑉𝐼 and 𝜔𝑗

𝑉𝐼 or 𝛿𝑗
𝑃𝐹given the relevant business combinations.  The primary 

 
7
 For Balance Sheet Financings, Funds From Operations over Interest, and Net Debt to EBITDA 

respectively. For Project Financings, Debt Service Cover Ratio and Loan Life Cover Ratio.  

Project Finance

Debt Sizing Constraints

  - DSCR (times) 1.8

  - Gearing Limit (%) 0.4

  - Default (times) 1.05

Project Finance Facilities - Tenor

  - Term Loan B  (Bullet) (Yrs) 5

  - Term Loan A (Amortising) (Yrs) 10

  - Notional amortisation (Yrs) 15

Project Finance Facilities - Pricing

  - Term Loan B Swap (%) 4.09%

  - Term Loan B Spread (bps) 180

  - Term Loan A Swap (%) 4.19%

  - Term Loan A Spread (bps) 209

  - Refinancing Rate (%) 6.1%

Expected Equity Returns (%) 8.0%

Balance Sheet Finacing

Credit Metrics (BBB Corporate) Merch Reg.

  - FFO / I (times) 4.2 2.4

  - Gearing Limit (%) 40.0 65.0

  - FFO / Debt (%) 20% 9%

Bond Issues

  - 5 Year (%) 5.45%

  - 7 Year (%) 5.59%

  - 10 Year (%) 5.65%

Commonwealth Bonds

  - 10 Year (%) 4.14%

Expected Equity Returns (%) 10.0%
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objective is to expand every term which contains 𝑝𝑖𝜀.  Expansion of the EBITDA and Tax 
terms is as follows: 
 

0 = −𝑋0
𝑖 + ∑ [(𝑝𝑖𝜀. 𝑞𝑗

𝑖 . 𝜋𝑗
𝑅) − 𝜗𝑗

𝑖 − 𝐹𝑂𝑀𝑗
𝑖 − 𝐼𝑗

𝑖 − 𝑃𝑗
𝑖 − ((𝑝𝑖𝜀. 𝑞𝑗

𝑖 . 𝜋𝑗
𝑅) − 𝜗𝑗

𝑖 − 𝐹𝑂𝑀𝑗
𝑖 − 𝐼𝑗

𝑖 − 𝑑𝑗
𝑖 − 𝐿𝑗−1

𝑖 ) . 𝜏𝑐] . (1 +
𝑁
𝑗=1

𝐾𝑒)
−(𝑗) − ∑ 𝑥𝑗

𝑖 . (1 + 𝐾𝑒)
−(𝑗) − 𝐷0

𝑖𝑁
𝑗=1          (16) 

 

The terms are then rearranged such that only the 𝑝𝑖𝜀 term is on the left-hand side of the 
equation: 
 
Let 𝐼𝑅𝑅 ≡  𝐾𝑒   
 

∑ (1 − 𝜏𝑐).𝑝𝑖𝜀. 𝑞𝑗
𝑖 . 𝜋𝑗

𝑅. (1 + 𝐾𝑒)
−(𝑗)𝑁

𝑗=1 = 𝑋0
𝑖 − ∑ [−(1 − 𝜏𝑐). 𝜗𝑗

𝑖 − (1 − 𝜏𝑐). 𝐹𝑂𝑀𝑗
𝑖 − (1 − 𝜏𝑐). (𝐼𝑗

𝑖
) −𝑃𝑗

𝑖
+𝑁

𝑗=1

𝜏𝑐 . 𝑑𝑗
𝑖 + 𝜏𝑐𝐿𝑗−1

𝑖 ). (1 + 𝐾𝑒)
−(𝑗)] + ∑ 𝑥𝑗

𝑖 . (1 + 𝐾𝑒)
−(𝑗) +𝐷0

𝑖𝑁
𝑗=1       (17) 

 

The model then solves for 𝑝𝑖𝜀 such that: 
 

𝑝𝑖𝜀 = 
𝑋0
𝑖

∑ (1−𝜏𝑐).𝑃
𝜀.𝜋𝑗

𝑅.(1+𝐾𝑒)
−(𝑗)𝑁

𝑗=1

+

∑ ((1−𝜏𝑐).𝜗𝑗
𝑖+(1−𝜏𝑐).𝐹𝑂𝑀𝑗

𝑖+(1−𝜏𝑐).(𝐼𝑗
𝑖)+𝑃𝑗

𝑖−𝜏𝑐.𝑑𝑗
𝑖−𝜏𝑐𝐿𝑗−1

𝑖 ).(1+𝐾𝑒)
−(𝑗))𝑁

𝑗=1

∑ (1−𝜏𝑐).
𝑁
𝑗=1 𝑞𝑗

𝑖 .𝜋𝑗
𝑅.(1+𝐾𝑒)

−(𝑗) 
+

∑ 𝑥𝑗
𝑖 .(1+𝐾𝑒)

−(𝑗)𝑁
𝑗=1 +𝐷0

𝑖

∑ (1−𝜏𝑐).𝑞𝑗
𝑖 .𝜋𝑗

𝑅.(1+𝐾𝑒)
−(𝑗)𝑁

𝑗=1

  (18) 
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Appendix III – Model Outputs 
 

Static Line Ratings 

 
 

  

Wind 1,950 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG

1    Potential Wind Output (GWh) 6,116 6,008 5,702 5,776 5,927 5,590 5,679 3,010 43,808

2    Practical Wind Output (GWh) 5,960 5,875 5,618 5,671 5,820 5,499 5,590 2,952 42,985

3      REZ Congestion (GWh) 156 133 85 104 107 91 89 58 823

4      Energy Curtailed (% of Prod) 2.5% 2.2% 1.5% 1.8% 1.8% 1.6% 1.6% 1.9% 1.9%

5    Economic Wind Output (GWh) 5,957 5,807 5,439 5,429 5,634 5,046 5,024 2,788 41,125

6      Spill -ve spot prices (GWh) 3 68 179 242 185 453 566 164 1,860

7      Energy Spilled (%) 0.1% 1.2% 3.3% 4.5% 3.3% 9.0% 11.3% 5.9% 4.5%

8    Total Curtail & Spill (GWh) 159 201 264 346 293 543 654 222 2,683

9      Total Curtail & Spill (% of Prod) 2.6% 3.4% 4.6% 6.0% 4.9% 9.7% 11.5% 7.4% 6.1%

10  Potential ACF (% - ACF) 35.8% 35.2% 33.3% 33.8% 34.7% 32.7% 33.2% 35.5% 34.3%

11  Economic ACF (% - ACF) 34.9% 34.0% 31.8% 31.8% 33.0% 29.5% 29.3% 32.9% 32.2%

12    ACF Loss (% - ACF) 0.9% 1.2% 1.5% 2.0% 1.7% 3.2% 3.8% 2.6% 2.1%

13  Revenue $m 570.5 551.8 298.1 595.1 971.4 612.7 588.5 395.9 4,584.1

14  Costs (incl. REZ) $m 605.2 605.9 607.5 605.9 605.9 605.9 607.5 300.4 4,544.1

15  Economic Profit $m -34.7 -54.1 -309.4 -10.7 365.5 6.9 -19.0 95.5 40.0

16  Unit Revenue ($/MWh) 95.8 95.0 54.8 109.6 172.4 121.4 117.1 142.0 111.5

17    Unit Cost ($/MWh) 101.6 104.3 111.7 111.6 107.5 120.1 120.9 107.8 110.5

18  Economic Profit ($/MWh) -5.8 -9.3 -56.9 -2.0 64.9 1.4 -3.8 34.3 1.0

Solar PV 880 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG

19  Potential Solar Output (GWh) 2,184 2,261 2,149 2,098 2,009 2,156 2,053 976 15,887

20  Practical Solar Output (GWh) 2,125 2,210 2,114 2,060 1,967 2,120 2,016 950 15,563

21    REZ Congestion (GWh) 59 51 35 38 42 36 37 26 324

22    Energy Curtailed (% of Prod) 2.7% 2.3% 1.6% 1.8% 2.1% 1.7% 1.8% 2.7% 2.0%

23  Economic Solar Output (GWh) 2,119 2,116 1,889 1,721 1,706 1,370 1,253 754 12,929

24    Spill -ve spot prices (GWh) 5 95 225 339 261 750 764 195 2,634

25    Energy Spilled (%) 0.3% 4.5% 11.9% 19.7% 15.3% 54.7% 60.9% 25.9% 20.4%

26  Total Curtail & Spill (GWh) 64 146 260 377 303 786 800 222 2,958

27    Total Curtail & Spill (% of Prod) 3.0% 6.4% 12.1% 18.0% 15.1% 36.4% 39.0% 22.7% 18.6%

28  Potential ACF (% - ACF) 27.6% 28.7% 27.3% 26.7% 25.5% 27.5% 26.1% 24.8% 26.8%

29  Economic ACF (% - ACF) 27.5% 27.4% 24.4% 22.3% 22.1% 17.8% 16.2% 19.7% 22.2%

30    ACF Loss (% - ACF) 0.1% 1.2% 2.9% 4.4% 3.4% 9.7% 9.9% 5.1% 4.6%

31  Revenue $m 198.7 177.5 89.0 125.7 165.3 95.5 81.3 58.1 991.1

32  Costs $m 110.5 110.6 110.9 110.6 110.6 110.6 110.9 54.8 829.5

33  Economic Profit $m 88.3 66.9 -21.9 15.1 54.7 -15.1 -29.6 3.2 161.5

34  Unit Revenue ($/MWh) 93.8 83.9 47.1 73.0 96.9 69.7 64.9 77.0 76.7

35    Unit Cost ($/MWh) 52.1 52.3 58.7 64.3 64.8 80.7 88.5 72.7 64.2

36  Economic Profit ($/MWh) 41.6 31.6 -11.6 8.8 32.1 -11.1 -23.6 4.3 12.5

37  Portfolio Output (Line 5+23) (GWh) 8,076 7,923 7,328 7,150 7,340 6,417 6,277 3,542 54,054

37  Portfolio Profit (Lines 15+33) $m 35.8 22.3 -68.5 6.8 96.9 -9.7 -27.4 38.5 13.5
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Seasonal Line Ratings 

 
 

  

Wind 2,225 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG

1    Potential Wind Output (GWh) 6,973 6,852 6,502 6,588 6,758 6,376 6,470 3,428 49,948

2    Practical Wind Output (GWh) 6,792 6,696 6,406 6,486 6,626 6,280 6,377 3,346 49,010

3      REZ Congestion (GWh) 181 156 96 102 132 96 93 82 938

4      Energy Curtailed (% of Prod) 2.6% 2.3% 1.5% 1.6% 2.0% 1.5% 1.4% 2.4% 1.9%

5    Economic Wind Output (GWh) 6,788 6,615 6,195 6,203 6,411 5,755 5,723 3,157 46,847

6      Spill -ve spot prices (GWh) 4 81 211 283 215 526 655 189 2,164

7      Energy Spilled (%) 0.1% 1.2% 3.4% 4.6% 3.4% 9.1% 11.4% 6.0% 4.6%

8    Total Curtail & Spill (GWh) 184 237 307 385 347 622 748 271 3,101

9      Total Curtail & Spill (% of Prod) 2.6% 3.5% 4.7% 5.9% 5.1% 9.7% 11.6% 7.9% 6.2%

10  Potential ACF (% - ACF) 35.8% 35.2% 33.3% 33.8% 34.7% 32.7% 33.1% 35.5% 34.3%

11  Economic ACF (% - ACF) 34.9% 33.9% 31.7% 31.8% 32.9% 29.5% 29.3% 32.7% 32.1%

12    ACF Loss (% - ACF) 0.9% 1.2% 1.6% 2.0% 1.8% 3.2% 3.8% 2.8% 2.2%

13  Revenue $m 649.9 627.8 339.0 681.5 1,111.1 700.1 671.4 450.0 5,230.8

14  Costs (incl. REZ) $m 691.2 692.0 693.9 692.0 692.0 692.0 693.9 343.2 5,190.1

15  Economic Profit $m -41.3 -64.2 -354.9 -10.5 419.2 8.1 -22.5 106.8 40.7

16  Unit Revenue ($/MWh) 95.7 94.9 54.7 109.9 173.3 121.7 117.3 142.5 111.7

17    Unit Cost ($/MWh) 101.8 104.6 112.0 111.6 107.9 120.2 121.3 108.7 110.8

18  Economic Profit ($/MWh) -6.1 -9.7 -57.3 -1.7 65.4 1.4 -3.9 33.8 0.9

Solar PV 880 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG

19  Potential Solar Output (GWh) 2,182 2,260 2,147 2,097 2,010 2,154 2,052 975 15,877

20  Practical Solar Output (GWh) 2,129 2,215 2,119 2,068 1,970 2,123 2,020 944 15,588

21    REZ Congestion (GWh) 52 45 28 29 40 32 32 31 289

22    Energy Curtailed (% of Prod) 2.4% 2.0% 1.3% 1.4% 2.0% 1.5% 1.6% 3.1% 1.8%

23  Economic Solar Output (GWh) 2,124 2,119 1,890 1,725 1,706 1,368 1,250 748 12,931

24    Spill -ve spot prices (GWh) 5 96 228 343 263 755 770 196 2,657

25    Energy Spilled (%) 0.2% 4.5% 12.1% 19.9% 15.4% 55.2% 61.6% 26.2% 20.6%

26  Total Curtail & Spill (GWh) 58 141 256 372 304 786 802 227 2,947

27    Total Curtail & Spill (% of Prod) 2.6% 6.3% 11.9% 17.7% 15.1% 36.5% 39.1% 23.3% 18.6%

28  Potential ACF (% - ACF) 27.7% 28.7% 27.4% 26.8% 25.6% 27.5% 26.1% 24.7% 26.8%

29  Economic ACF (% - ACF) 27.6% 27.5% 24.5% 22.4% 22.1% 17.7% 16.2% 19.6% 22.2%

30    ACF Loss (% - ACF) 0.1% 1.2% 3.0% 4.5% 3.4% 9.8% 10.0% 5.1% 4.6%

31  Revenue $m 198.9 177.3 88.8 126.0 166.3 95.3 81.2 57.4 991.3

32  Costs $m 109.3 109.4 109.7 109.4 109.4 109.4 109.7 54.3 820.6

33  Economic Profit $m 89.6 67.9 -20.9 16.6 56.9 -14.1 -28.5 3.2 170.8

34  Unit Revenue ($/MWh) 93.6 83.7 47.0 73.1 97.5 69.6 65.0 76.8 76.7

35    Unit Cost ($/MWh) 51.4 51.6 58.0 63.4 64.1 80.0 87.8 72.5 63.5

36  Economic Profit ($/MWh) 42.2 32.1 -11.0 9.6 33.4 -10.3 -22.8 4.2 13.2

37  Portfolio Output (Line 5+23) (GWh) 8,912 8,734 8,085 7,928 8,117 7,123 6,973 3,905 59,777

37  Portfolio Profit (Lines 15+33) $m 36.1 22.4 -68.3 7.9 98.7 -8.9 -26.7 38.1 14.1
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Real-Time Ratings 

 

Wind 3,275 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG

1    Potential Wind Output (GWh) 10,294 10,115 9,610 9,728 9,977 9,417 9,548 5,059 73,749

2    Practical Wind Output (GWh) 10,031 9,936 9,474 9,569 9,781 9,280 9,383 4,952 72,407

3      REZ Congestion (GWh) 263 179 136 158 197 137 165 107 1,343

4      Energy Curtailed (% of Prod) 2.6% 1.8% 1.4% 1.6% 2.0% 1.5% 1.7% 2.1% 1.8%

5    Economic Wind Output (GWh) 10,026 9,812 9,159 9,145 9,457 8,499 8,414 4,670 69,182

6      Spill -ve spot prices (GWh) 6 124 315 425 324 780 969 282 3,224

7      Energy Spilled (%) 0.1% 1.3% 3.4% 4.6% 3.4% 9.2% 11.5% 6.0% 4.7%

8    Total Curtail & Spill (GWh) 269 304 451 583 520 918 1,134 388 4,567

9      Total Curtail & Spill (% of Prod) 2.6% 3.0% 4.7% 6.0% 5.2% 9.7% 11.9% 7.7% 6.2%

10  Potential ACF (% - ACF) 35.9% 35.3% 33.4% 33.9% 34.8% 32.8% 33.2% 35.6% 34.4%

11  Economic ACF (% - ACF) 35.0% 34.2% 31.8% 31.9% 33.0% 29.6% 29.2% 32.8% 32.2%

12    ACF Loss (% - ACF) 0.9% 1.1% 1.6% 2.0% 1.8% 3.2% 3.9% 2.7% 2.2%

13  Revenue $m 955.7 928.6 498.4 1,003.8 1,633.7 1,032.8 985.8 663.0 7,701.9

14  Costs (incl. REZ) $m 989.9 991.1 993.8 991.1 991.1 991.1 993.8 491.5 7,433.1

15  Economic Profit $m -34.2 -62.4 -495.4 12.8 642.7 41.8 -7.9 171.6 268.8

16  Unit Revenue ($/MWh) 95.3 94.6 54.4 109.8 172.8 121.5 117.2 142.0 111.3

17    Unit Cost ($/MWh) 98.7 101.0 108.5 108.4 104.8 116.6 118.1 105.2 107.4

18  Economic Profit ($/MWh) -3.4 -6.4 -54.1 1.4 68.0 4.9 -0.9 36.7 3.9

Solar PV 1,420 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG

19  Potential Solar Output (GWh) 3,522 3,648 3,465 3,385 3,243 3,477 3,312 1,573 25,625

20  Practical Solar Output (GWh) 3,455 3,597 3,431 3,345 3,192 3,436 3,269 1,536 25,261

21    REZ Congestion (GWh) 67 51 35 40 51 41 43 37 365

22    Energy Curtailed (% of Prod) 1.9% 1.4% 1.0% 1.2% 1.6% 1.2% 1.3% 2.4% 1.4%

23  Economic Solar Output (GWh) 3,446 3,435 3,055 2,778 2,757 2,208 2,018 1,217 20,913

24    Spill -ve spot prices (GWh) 9 162 376 568 435 1,228 1,251 319 4,347

25    Energy Spilled (%) 0.3% 4.7% 12.3% 20.4% 15.8% 55.6% 62.0% 26.2% 20.8%

26  Total Curtail & Spill (GWh) 75 213 410 608 486 1,269 1,294 356 4,712

27    Total Curtail & Spill (% of Prod) 2.1% 5.8% 11.8% 17.9% 15.0% 36.5% 39.1% 22.6% 18.4%

28  Potential ACF (% - ACF) 27.8% 28.9% 27.5% 26.9% 25.7% 27.6% 26.2% 24.9% 26.9%

29  Economic ACF (% - ACF) 27.7% 27.6% 24.5% 22.3% 22.2% 17.8% 16.2% 19.7% 22.2%

30    ACF Loss (% - ACF) 0.1% 1.3% 3.0% 4.6% 3.5% 9.9% 10.0% 5.2% 4.7%

31  Revenue $m 320.4 286.0 142.0 202.0 267.0 152.9 130.1 92.4 1,592.9

32  Costs $m 172.4 172.6 173.1 172.6 172.6 172.6 173.1 85.6 1,294.5

33  Economic Profit $m 148.0 113.4 -31.0 29.4 94.4 -19.7 -43.0 6.9 298.4

34  Unit Revenue ($/MWh) 93.0 83.3 46.5 72.7 96.9 69.2 64.5 75.9 76.2

35    Unit Cost ($/MWh) 50.0 50.2 56.7 62.1 62.6 78.2 85.8 70.3 61.9

36  Economic Profit ($/MWh) 43.0 33.0 -10.2 10.6 34.3 -8.9 -21.3 5.6 14.3

37  Portfolio Output (Line 5+23) (GWh) 13,472 13,247 12,214 11,922 12,214 10,707 10,432 5,888 90,096

37  Portfolio Profit (Lines 15+33) $m 39.5 26.7 -64.2 12.0 102.2 -4.0 -22.2 42.4 18.2


