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Abstract

Renewable Energy Zones (REZ) and the associated transmission network infrastructure
are an important policy development in Australia’s transitioning electricity market. REZs
form the basis upon which to expand the renewable hosting capacity of the National
Electricity Market (NEM) at scale, while simultaneously minimising the footprint of
infrastructure — noting community, cultural heritage and environmental (i.e. biodiversity)
sensitivities. In the NEM’s Queensland region, REZs are developed outside the
regulatory framework as non-regulated or ‘merchant’ assets, with connecting generators
paying user charges. Early REZs involved a small number of committed generators
connecting to, and fully subscribing, the REZ asset. Under such conditions, cost
allocation is straight forward. But when a geographically dispersed coalition of
generators seek to connect over different timeframes and with longer distances involved —
the cost allocation task and the tractability of merchant REZ commitment rises in
complexity. Since merchant REZs are a novel concept, there is no historic practice to
draw from. In this article, we identify the optimal coalition of connecting generators and
rely on Shapley’s (1951) seminal work to devise a fair and efficient set of user charges,
albeit in the context of renewable power project development. We also examine how to
deal with transient idle capacity through structured financing and regulatory policy.
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Ratings and Generator Cost Allocation
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Abstract

Renewable Energy Zones (REZ) and associated transmission network
infrastructure are an important policy development in Australia’s
transitioning electricity market. Stylised on the Texas model, REZs form
the basis upon which to expand renewable hosting capacity of Australia’s
National Electricity Market at scale, while simultaneously minimising the
footprint of infrastructure — noting community, cultural heritage and
environmental (i.e. biodiversity) sensitivities. In the Queensland region of
the market, REZs have been developed outside the regulatory framework
as ‘merchant’ assets, where connecting generators pay user charges
rather than the rate base. However, as a geographically dispersed
coalition of generators seek to connect over longer distances, cost
allocation and the financial tractability of merchant REZs rises in
complexity. In this article, we show how real-time line ratings and
algorithmic cost allocation extends their financial viability.

Keywords: Renewable Energy Zones, Real-Time Line Ratings,
Renewables, Battery Storage, Cost Allocation.

JEL Codes: D52, D53, G12, L94 and Q40.

1. Introduction

Renewable Energy Zones (REZs) are a key policy initiative in Australia’s National
Electricity Market (NEM), designed to coordinate multiple renewable projects and
minimise marginal transmission costs. If transmission costs were trivial and community
attitudes consistently favourable, coordination may be unnecessary. However,
renewable projects and transmission infrastructure encroaches on private land,
competes with environmental (i.e. biodiversity) and agricultural objectives, and risks
disturbing cultural sites (Simshauser and Newbery, 2024). Above all, transmission is
costly. Consequently, REZs are essential even in a country as vast as Australia.

While REZs in Australia have largely followed the Texas / ERCOT model, each of the
NEM’s three largest regions (New South Wales, Queensland and Victoria) have taken
subtly different approaches. New South Wales opted for a contestable model in 2020,
planning large-scale, capital-intensive augmentations capable of hosting ~4-8GW in
each REZ. Time, complexity and costs were vastly understated with only one reaching
financial close after six years of activity'. Victoria created VicGrid in 2021, with no
progress to date. Queensland pursued smaller, non-regulated (merchant) REZ
augmentations extending from the transmission backbone and underwritten by generator
user charges rather than as regulated assets paid by end-use consumers. This model
enabled rapid deployment with three REZs planned, developed and energized in just
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' The Central West Orana REZ in NSW reached financial close albeit at multiples of the initial cost estimate.
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four years — adding a cumulative 4.5GW hosting capacity. The next REZ (~4GW) is
under development at the time of writing.

While the Queensland model has the advantage of speed, it must deal with the primal
challenge of reaching financial viability. This only occurs after multiple renewable
projects have reached financial close and committed to connection. Yet, wind and solar
projects take years to develop and secure approvals and financing, meaning
simultaneous generator commitments connecting in a common zone could only occur by
chance. More importantly, as with all scarce resources, REZs form an upward sloping
supply curve. As REZs extend further away from the transmission backbone, costs rise,
and so too will generator user charges. Under such conditions, user charges may
exceed generators ‘capacity to pay’.

Prior research on merchant REZs examined how various parameters alter hosting
capacity including (i) the complementarity of renewable resources (Simshauser,
Billimoria and Rogers, 2022; McDonald, 2023, 2024), (ii) access regimes (Newbery and
Biggar, 2024; Simshauser and Newbery, 2024), (iii) line ratings (Simshauser, 2024) and
(iv) battery storage (Simshauser, 2025). However, prior research assessed each
parameter independently, and more crucially, REZ user charges to connecting
generators were greatly simplified and allocated by expected output and by asset class.
Such an approach ignores important locational differences and potentially binding
capacity to pay constraints.

In this article, we extend prior research by combining all parameters to identify the
optimal mix of renewable plant in a REZ, and define a set of efficient, fair and
defendable user charges to be allocated to connecting generators. Using an applied
example involving a 275kV REZ, we also navigate through a binding ‘capacity to pay’
problem by examining maximal combinations of connecting generators by contrasting
static, seasonal, and real-time transmission line ratings.

Model results show real-time ratings dramatically increase renewable hosting capacity
and consequently, the collective capacity to pay by connecting generators. While the
scenario we construct is applied to an example of a merchant REZ in the NEM’s
Queensland region, the framework is capable of being generalised and applied to any
transitioning power system seeking to develop scale-efficient REZs under either a
merchant or regulated model.

This article is structured as follows: Section 2 reviews relevant literature. Section 3
introduces models and data. Section 4 presents results. Policy implications and
conclusions follow.

2. Review of Literature

REZs can be defined as an area comprising high quality renewable resources capable of
being developed at scale (Pack et al., 2021). The origins of renewable zones can be
traced back to the Texas // ERCOT market, with the Public Utilities Commission of
Texas approving the first ‘Competitive REZ’ or ‘cREZ’ in 2008 (Dorsey-Palmateer, 2020).
By 2009, investment in wind capacity had stalled with curtailment rates rising to ~17%
(Gowdy, 2022; Du, 2023). This had been anticipated in 2005, and consequently 2400
miles of 345kV transmission was approved at a final investment cost of ~$6.8 billion —
specifically to connect remote wind resources with urban load centres (Jang, 2020).
Wind transfer capacity in West Texas and the Panhandle was increased from ~6900 to
18,500MW (Du and Rubin, 2018). Following the cREZ, wind investments surged, and
curtailment rates were cut to ~0.5% (Dorsey-Palmateer, 2020).
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The main advantage of REZs is their ability to coordinate the connection of disparate
VRE proponents that would otherwise act independently (Simshauser, 2021; McDonald,
2023; Newbery and Biggar, 2024). In this sense, REZs are designed to eliminate
otherwise duplicate network investments (Simshauser, Billimoria and Rogers, 2022;
McDonald, 2024). In Australia, REZs have become an important initiative to facilitate
additional renewable hosting capacity (McDonald, 2024). In the NEM’s Victorian and
NSW regions, REZs are state-led regulated asset developments. As noted in Section 1
in the NEM’s Queensland region, planned REZs are comparatively smaller in scale,
larger in number, and merchant investments led by a benevolent, state-owned
transmission planner (Newbery and Biggar, 2024; Simshauser and Newbery, 2024).
However, all prior research greatly simplified user charges under conditions of perfect
entry (Simshauser, Billimoria and Rogers, 2022; Simshauser, 2024, 2025; Simshauser
and Newbery, 2024)

The literature on cost sharing in transmission networks is extensive and has a long-
standing history. The use of Game Theory to address multiple aspects of cost sharing in
power systems is well known (Contreras, 1997). A thorough review of approaches to
cost sharing in transmission networks in these circumstances is presented in Khan and
Agnihotri (2013). Much of this literature focuses on the classic 6-bus system introduced
by Garver (1970). This is a system involving a DC load flow model subject to a series of
constraints (e.g. Kirchhoff’s laws).

Other related research on transmission cost allocation includes Kristiansen et al.,
(2018), which reviews flexibility providers such as fast ramping gas turbines, hydropower
and demand-side management using a generation and transmission capacity expansion
planning model. The focus was on the different ways a technology can add value to a
combination of technologies. Fuentes Gonzalez et al., (2022) use a similar framework
focusing on community energy projects.

Our situation is different to the classic bus literature and the related transmission cost
allocation research.? Our problem, given a merchant REZ model, is the efficient
allocation of shared infrastructure costs to large-scale renewable generators without
regulator involvement. The closest research to the work presented in this article is that
found in Nylund (2014), where multiple entities in different countries collaborate to
regionally expand power networks. We apply the concepts of cost sharing based on
cooperative game theory (Hougaard, 2009). Other approaches from the cost allocation
literature are also possible. However, these approaches don’t consider coalition
structures and combined cost profiles of multiple players — which are relevant for the
present context. In addition, given the costs of projects considered in this article are
transferable between parties, a TU-game (or transferable utility game) is an appropriate
approach to model the current situation (see Shellshear and Sudhdélter, 2009). For these
reasons, we solve the current cost allocation problem using the Shapley Value (Shapley,
1957) given its properties are desirable characteristics sought in the current context.

3. REZ data and models

Our task is to identify the optimal mix of renewable generation in a merchant REZ and
examine cost allocation to a coalition of participating generators given capacity to pay
constraints. We examine an applied case study from the NEM’s Queensland region,
noting the principles and modelling framework can be generalised to any power system.

2 Qur equivalence to the traditional bus approach would be to take the volume weighted production price as the synthetic
version of a bus system (price being a proxy for demand with intermittent resources). However, this is still not a good
match because there are definite economies of scale with shared REZ assets, hence our approach in this article.
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By way of brief background, the topography of the Queensland power system comprises
a 275kV transmission backbone extending over a 1500km range, from the north near
Cairns to the southern border with New South Wales (Fig.1). Renewable resources can
be found along the length and breadth of the network with ideal locations identified in
Fig.1. The present analysis will focus on the Central Queensland REZ.

Figure 1: Renewable Energy Zones in Queensland
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3.1 REZ layout

The Central Queensland REZ layout is presented in Fig.2. To summarise, there are six
potential tenants (Wind A, Solar B, Wind C, Solar D and Battery E) which trigger
investment in Lines #1 and #2, and Substations #1 and #2, while ‘Wind F’ triggers Line
#3 and Substation #3.

It can be seen that an optimised REZ comprising all generation projects A..F involves an
investment of $890m — the simple sum of Lines 1-3, Substation 1-3 and the $40m
expansion of the Existing Substation. For a benevolent transmission planner, breakeven
‘user charges’ equate to 8.2% per annum (i.e. ~1.7% O&M and ~6.5% Return on
Capital). Given $890m capital invested, breakeven user charges therefore equal $73m
pa (i.e. $890m x 8.2% = $73m).

The task of the transmission planner is to identify the optimal mix of wind, solar and
storage for the REZ and to identify a fair, efficient and defendable allocation of user
charges across connecting generators within a capacity-to-pay constraint (see Section
3.4). Two generators (C and F) have ‘Direct Options’ to connect. However, as can be
seen from Fig.2, if each generator pursued direct connections (i.e. Options C and F),
total investment costs would rise from $890m to $1,200m with breakeven user charges
rising from $73m to $98m. This exemplifies the notion of REZs — minimising costs and
avoiding otherwise duplicative transmission infrastructure.
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Figure 2: Renewable Energy Zone Layout
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3.2 REZline ratings

For modelling purposes, REZ transmission line capacity is assumed to comprise a
double circuit (twin sulphur) 275kV radial connection extending from the main
transmission backbone, connecting the six renewable and storage generators. REZ
network transfer limits are driven by conductor type and allowable operating
temperatures (~200km from Australia’s coastline). To maintain continuity with prior REZ
research (Simshauser, 2021; Simshauser and Newbery, 2024), static and seasonal line
transfer limits are outlined in Tab.1.

Table 1:Static vs Seasonal REZ Line Transfer Limits (Double Circuit 275kV)

Normal Rating Emergency Rating
(Amps Double Circuit) (Amps Single Circuit)

Static 1734 1281
Seasonal

- Summer 1734 1281

- Mild Seasons 1981 1387

- Winter 2162 1461

(MW Double Circuit) (MW Single Circuit)

Static 1536 1145
Seasonal

- Summer 1536 1145

- Mild Seasons 1756 1229

- Winer 1916 1295

FCAS raise +750
Interconnect Limit (65225, 2863

The derivation of results in Tab.1 for seasonal line ratings, using summer (REZz2&5oma!
as the example, is as follows:
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REZZegsonal = Min[(2 -v/3 - 0.275 - NRFe&omal . 0.93), (V3 0.275 - ER$2459141 - 0.93 +
FCAS),05%tc] — REZpegsonal = Min(1536,(1145 + FCAS 750) = 1895,2863MW) (1)

The first term in Eq.1 identifies seasonal thermal transfer capacity for each conductor for
each of two circuits (2 x V3 x 0.275 x Current) operating at Normal Rating during
summer (NR:£459141) and converted to MW assuming a power factor of 0.93. The
second term in Eq.(1) repeats this process for a single circuit operating at its Emergency
Rating during summer (ERZ2%597%1) with a ‘runback scheme’ enabled inside the REZ,
and Frequency Control Ancillary Services (FCAS) relied on outside the REZ under
normal operating conditions (the limits of which are based on the loss of a single circuit
due to, for example, lightning strikes). The third term 65t%¢ js an exogenously
determined downstream constraint (i.e. maximum transfer capacity of the connecting
substation in Fig.2).

In this research, we also examine real-time line ratings. The array of variables driving
real-time line ratings includes Conductor Type CT, emergency temperature rating Ty, 4
number of conductors C,,, wind speed WW;, wind angle to the conductor WW,,,, ambient
temperature T,,,, solar angle S, 4, solar absorption coefficient A and the emissivity of
the conductor surface over time E as set out on the RHS of Eq.2.

(2 -v/3- 0275+ NRF™®) - 0.93,

REZ{Em = Min|{(3-0.275 ERER) - 0.93 + FCAS}| -
Q.S‘tatic
NRETR ERR™® = F(CT, Trmax> Cno Ws, Wang, Tam» Sang» A E), 2)
vVteT
By comparison to static or seasonal limits, real-time ratings can lead to material
increases in transfer capacity. This is illustrated in Fig.3, where the y-axis measures line
transfer limits and the x-axis measures wind speed.

Historically, maximum line transfer limits would, by necessity, be based on conservative
engineering assumptions and weather conditions. A lack of real-time locational weather
data, and the need to ensure the power system could meet critical event maximum
demand periods required such an approach. In the case of Queensland, these
conditions correlated with very hot, still conditions during the middle of the day (i.e.
12:30pm) when household, commercial and industrial cooling loads would reach their
peaks, and when the power system was reliant on coal and gas-fired generators to meet
the prevailing maximum demand. In Fig.3, such conditions are highlighted by the
square-shaped black marker, and by the horizontal red line which represents the static
(and summer seasonal) rating for a double circuit 275kV line.

Real-time line ratings (hourly resolution) in Fig.3 are represented by the grey and blue
markers. These markers rise steadily as the windspeed rises from 0 to 3m/s (at which
point the thermal cooling properties of wind for line ratings plateaus). The grey markers
represent hourly periods where ambient temperatures exceed 35°C while the blue
markers represent hourly periods where the solar angle was negative (i.e. non-solar
periods) which implies cooler conditions — and notice that these periods also dominate
high-wind conditions — consistent with the diurnal patterns of Queensland’s wind
resources (as Fig.5 subsequently reveals).
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Figure 3: Real-Time Ratings vs Seasonal & Static Ratings
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Why real-time line ratings are important is because in a high-renewables grid, power
system demand and supply conditions are distinctly different from the historic thermal
system:

1.

In regions such as Queensland — which has the highest take-up rate of rooftop
solar PV in the world — grid-supplied maximum demand has visibly shifted (blue-
shaded area, Fig.4). While aggregate final demand still occurs at ~12:30pm, the
‘grid-supplied’ maximum demand has shifted to ~5:30pm due to self-supply from
rooftop solar (yellow-shaded area, Fig.4). This time-of-day constraint no long
matches maximum demand. Specifically, while aggregate final demand in Fig.4
is 12,800MW, grid-supplied load during the middle of the day is only 8800MW
due to ~4000MW of behind-the-meter rooftop solar PV production. Real-time line
ratings better match transfer capacity with evening periods (i.e. for planning
purposes).

Technology has advanced. It is now possible to deploy low cost transmission
line mounted’ weather stations, capable of streaming real-time weather data back
to control rooms, meaning real-time ratings are now viable.

REZs primatrily exist to connect wind projects and as the scatter plot in Fig.3
illustrates, higher wind speeds are associated with higher line transfer capacity.
And as Fig.5 notes, Queensland wind resources reach their peak output during
evening periods. The combination of the solar angle (< 0 Degrees) and elevated
wind speeds provides for ideal conditions vis-a-vis real-time line ratings.
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Figure 4: Maximum demand event in Queensland (2025)
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Figure 5: Average Summer Wind and Solar PV output (Central Queensland)
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In our REZ Optimisation Model simulations, we will contrast the impact of static,
seasonal and real-time line ratings on renewable generation hosting capacity, REZ cost
allocation, and associated user charges.

3.3 Wind and solar data

Fig.5 illustrated the diurnal pattern of wind and solar in Central Queensland, which
exhibits a level of complementarity. Average wind output rises either side of solar PV
output. The hourly correlation between wind and solar is -0.42 during summer, -0.29 in
winter and -0.43 during spring. Even for the same technology (Wind A and Wind C in
Fig.2, located ~50kms apart), output exhibits strong but imperfect correlation, as Fig.6
illustrates.
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Figure 6: 7': years of matched wind output, adjacent locations (Central REZ)
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Given the complementarity of wind and solar, the optimal installed renewable plant
capacity (MW) will exceed REZ transmission line transfer limits. However, only time-
sequential modelling can identify the extent of diversity (see Guerra et al., 2020; Merrick
et al., 2024), which is the main task of our REZ Optimisation Model.

In doing so, we rely on 77 years of historic hourly weather reanalysis from 2018-2025
(drawn from Gilmore et al., 2025). A summary of the appropriately time-matched spot
price statistics over the same period appears in Tab.2.

Table 2: Statistical summary of spot prices and dispatch-weighted prices (2025$)

Spot Prices 2018 2019 2020 2021 2022 2023 2024 2025 AVG
1 Time Weighted Average ($/MWh) 92.7 87.4 49.1 101.7 135.0 93.5 112.2 103.7 96.4
2 Wind Dispatch Weighted  ($/MWh) 92.5 90.8 53.3 110.8 153.0 113.7 139.1 134.2 108.3
3 Wind % of Average Spot (%) 100% 104% 109% 109% 113% 122% 124% 129% 112%
4 Solar Dispatch Weighted ~ ($/MWh) 92.1 82.9 48.3 80.6 98.3 70.5 87.8 73.2 79.8
5 Solar % of Average Spot (%) 99% 95% 98% 79% 73% 75% 78% 71% 83%
6 Negative Price Events (Hrs) 14 152 378 546 391 1156 1208 581 4426
7 90th Precentile Spot Price  ($/MWh) 62.5 48.0 19.2 18.7 24.4 -19.8 -23.1 -18.7 18.9
8 10th Precentile Spot Price  ($/MWh) 133.5 132.6 75.4 146.1 232.5 176.6 209.3 166.3 167.6
9 Coefficient of Variation* ($/MWh) 0.5 0.6 1.3 4.0 2.3 2.2 3.3 3.7 2.7
10 Kurtosis ($/MWh) 354.4 511.7 302.7 744.7 421.2 657.6 816.9 745.7  1,329.6
11 Skewness ($/Mwh) 13.5 9.5 13.9 23.1 18.0 21.0 25.5 25.5 30.8
12 Mininum Spot Price ($/Mwh) -183.0 -836.0 -688.8 -1,000.0 -62.8 -95.6 -136.6 -44.8 -1,000.0
13 Maximum Spot Price ($/MWh) 16154 2,652.1 1,551.0 17,983.3 9,903.8 9,050.0 15,747.9 13,289.7 17,983.3

* Coefficient of Variation based on hourly data (Std Dev / Time Weighted Average)
Source: Australian Energy Market Operator.

Renewable plant capacity additions impact hourly prices differentially. During daylight
hours, adding solar PV has a depressing effect (i.e. merit order effect) on spot prices.
But as Bushnell and Novan (2021) and Gongalves and Menezes (2022) identify, spot
prices rise in non-solar periods. Wind output has equivalent effects. Consistent with the
modelling approach in Simshauser and Newbery (2024), our REZ Optimisation Model
re-models spot prices using the hourly regression coefficients from Gongalves and
Menezes (2022) on a dynamic basis as wind and solar capacity levels are altered.
Coefficients are outlined in Appendix I.
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3.4 Renewable and Storage Plant costs

We use a commercial-grade Project & Corporate Finance Model (PCF Model) to
produce entry cost estimates of wind, solar and utility-scale batteries. As the title
suggests, the model is capable of producing either on-balance sheet or project financed
plant. The generalised post-tax, post-financing Levelized Cost of Electricity estimates
calculated by the model incorporate co-optimised structured finance and taxation
variables. Model logic, engineering and capital markets input parameters appear in
Appendix II. Estimated entry costs from the PCF model (excluding REZ user charges)
are set out in Tab.3 (see Column ‘a’, Lines 1-4). These entry cost estimates, which are
assumed to be divisible, form a critical cost input into our REZ Optimisation Model.

An important variable in the subsequent analysis is generators ‘capacity to pay’
connection charges. Since the REZ under examination is a merchant asset with user
charges paid for by connecting generators, some estimate of their reasonable capacity
to pay is required. For obvious reasons, a generator’s capacity to pay is not endless.
For this purpose, we rely on the specific work undertaken by Aurecon (2025), who
collated costs from their ‘due diligence’ reports for banking purposes across 60,000MW
of wind, solar and battery projects in Australia’s NEM. To summarise the results of that
work, a generators capacity to pay connection investment costs (and the annual user
charges that follow) trends towards 10% (-2%/+5%) of the overnight capital cost of wind
and solar plant. As project capacity factors rise, capacity to pay rises, and vice versa.
Capacity to pay no doubt varies by jurisdiction, but for our purposes we will rely on 10%
as the capacity to pay given our wind and solar capacity factors broadly align with
market medians. How we translate a 10% capacity to pay ‘limit’ for a wind farm is as
follows:

e The overnight capital cost of wind (per Appendix Il) is $3373/kW;

e Capacity to pay is 10% of the overnight capital cost, or $337/kW;

e Consequently, a 1000MW wind farm has the ‘capacity to pay’ (or underwrite)
$337m (1000MW x 337/kW) of REZ transmission infrastructure.

e Noting user charges flow at 8.2% per annum (as specified in Section 3.13), this
translates $337m x 8.2% = $27,500 per MW per annum ($/MW/a) as illustrated in
Tab.3, line 1, column b.

¢ Given an annual capacity factor of ~34.5%, wind capacity to pay of
$27,500/MW/a converts to a unit cost of $9.3/MWh (see line 1, column c).

We repeat this process for solar PV and battery storage (Lines 2-3, column b), with
charges converted to a unit cost ($/MWh) in column c, with the final generalised entry
cost estimate for the three technologies appearing in column d.

Table 3: Plant entry costs* and REZ ‘capacity to pay’
Unit Cost (Excl. REZ) Capacity-to-Pay Unit Cost (Incl. REZ)

Entry Costs

($/MWh) ($/MW/a) ($/MWh) ($/MWh)
a b c d=(a+c)
1 Wind 93.9 27,500 9.3 103.2
2 Solar PV 47.9 10,500 4.4 52.3
3 Battery Capacity (1hr) 9.0 12,500 *1.4 20.0*
4 Each +1hr Storage 3.6

* Based on 4hr battery ** Battery cost expressed as an hourly capacity charge in $/MW/h

3 Recall this comprised of a 1.7% charge for O&M and 6.5% for Capital Charges at the weighted average cost of capital.
4 These represent the “carrying cost” of the battery. To determining the annual fixed and sunk costs of a 200MW,
800MWh battery before REZ costs is therefore as follows: ($9.0 + 3 x $3.6) x 200 x 8760hrs = $34.7 million pa.
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Final REZ user charges will be the subject of modelled outcomes. However, the
capacity-to-pay parameters in Tab.3 provide a binding constraint or ‘upper bound’ to
REZ transmission user charges. These upper bounds naturally raise the prospect of an
affordability gap, which we explore in Section 4.

3.5 Overview of REZ Optimisation Model

The REZ Optimisation Model ostensibly follows a form of Stackelberg setup. A welfare
maximising benevolent transmission planner is the leader, and renewable firms are
followers. The first stage involves the planner identifying the optimal mix of generation
plant for the REZ, and sizing its infrastructure accordingly. The second stage involves
Nash-Cournot games amongst renewable firms in two timeframes, (i) ex-ante profit-
maximising investment in planning timeframes, and (ii) dynamic ex-post profit-
maximising dispatch in operational (hourly resolution) timeframes.

REZ Optimisation model logic is grounded firmly in welfare economics. All changes in
producer and consumer surplus are tracked for each scenario. Onshore renewables
form the lowest cost producers, and transmission network hosting capacity for
renewables is a scarce resource.® Consequently in the model, entry occurs continuously
until economic rents are competed away, or entry parameters of each asset class reach
binding limits of project finance covenants, which in turn are applied by risk averse
banks. Incorporating this into our REZ model logic occurs as follows:

Let r € R be the set of generators, each with installed capacity K,. The REZ has
network transfer capacity which varies according to rating regime, (REZStatic.SeasRTR),
Let t € T be the set of hourly dispatch intervals over our 774 year simulation. In the
model, C,, is the divisible unit cost of each generation technology regardless of scale
($/MWh) and represents an output from our PCF Model. Let plant availability g, be a
binary variable equal to an element of the set {0,1}. Let the ex-post or actual output of
generator r in trading interval t be g, while the ex-ante ‘expected’ output be e(q.;),
noting that expected output can be adversely impacted by uncertain events, viz. REZ
transmission line congestion and negative price events which are ultimately constrained
by a bankable curtailment rate (6,-). The relevant spot price for each trading interval is
given by p, .. The objective function from this point becomes a relatively straightforward
one:

OBJy = Max ( Zeer Xrer Gre ) (3)
S.T.

YrerQre S Ky BreVTERLET, (4)
YrerQre < REZE™RV t €T | (g = 0if Dy < 0) (5)
(Zter Zrerare) = [Zeer Zrer(1 = 6,) - e(qre)] (6)
(Zter Zrerre Pre) — (Teer LrerKr - Crp) = 0. (7)

The Objective Function in Eq.(3) seeks to maximise production subject to a set of
constraints. Wind and solar projects bid their output into the spot market at the relevant

5> As noted in the introduction, transmission is costly and there are limits to augmentation applied by community
opposition, cultural and heritage considerations, and environmental (i.e. biodiversity) constraints. Consequently,
transmission capacity developed for the purposes of renewable generation is a scarce resource.
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marginal running cost (i.e. $0/MWh). Eq.(4) ensures generation dispatch is constrained
by total plant capacity and plant availability ;. - 5, .. Aggregate output for trading interval
t € T is constrained by transmission line transfer limits in Eq.(5), in this case REZR™R
(noting REZ7¢% and REZ;** are also examined). Crucially, in Eq.(6) wind and solar
curtailment rates (6,.) drive the difference between expected e(qr,t) and actual output
(qr,t) and must not exceed exogenously determined bankability limits associated with
contemporary project financings outlined in Appendix Il as specified in Simshauser &
Newbery (2024). Finally, any production maximising solution is constrained by normal
returns via Eq.(7). Renewable fleet revenues are derived by production output g,., and
spot prices p, . with normal profit being determined by the point at which unit revenues
meet entry costs C,. . set out in Tab.3 (as derived by the PCF Model).

In the model, batteries h form part of the potential coalition of REZ generators such that
h,r € R. Batteries are assumed to maximise arbitrage profit each day (Arbh,d) for any
given level of storage, j, via generating (qh,t) at round trip efficiency (y;) during
maximum daily spot market price events (pmax;), and re-charging (—tht) during
minimum spot price events (pmin,), such that g, € [-Kj, +K,]. We assume batteries
constrain their activity to one cycle per day with the optimisation ensuring the diurnal
storage balance is met (Y, g, = 0). This is formally implemented with perfect
foresight of day ahead spot prices. Consequently, bids and offers are dynamically solved
each day to meet the objective function. Any battery is assumed to sit within a
renewable portfolio and thus in any trading interval where aggregate wind and solar
output g, exceeds transmission line ratings REZFTR, the spot price for the battery during
that interval (py,,.) is deemed (p,,, = 0), meaning the signal to generate disappears, and
conversely, may provide an opportunity to re-charge at a zero price unless there are
higher value (i.e. negative prices) on the day such that:

Arbh’d =

, Z§=1 Art 2 REZf'ﬁh,t =0
lf R S A — '
Yr=1qrt < REZ{,Pnt = Dny
(8)

<(2?=1 pmaxp; - qp - Vh) + (Z?=1 pming ;- —CIh,t)

3.6 Overview of Cost Sharing Model

Our approach to efficient and fair cost allocation amongst the final coalition of connecting
generators, h,r € R, leverages Game Theory techniques to provide a set of market-
inducing characteristics of a cost sharing solution. Game Theory is a rich theoretical
edifice providing a versatile set of techniques which have been applied to everything,
from apportionment methods (Shellshear, 2010) to electricity markets (Contreras, 1997).

Our cost allocation approach is based on a set of desirable principles, viz. a cost sharing
approach for the coalition of generators should fulfill and build upon principles that are
known to produce closed-form cost sharing solutions that can be applied directly.

Before we explain the desirable characteristics of a cost sharing solution, we provide
four core principles that guide our cost sharing solution, which in turn provide the right
incentives for generators to participate in REZs:

1. REZ cost sharing should incentivize generators to co-operate as a coalition, that
is, provide each expected generator with a better solution than if they attempt to
act independently and should do so “fairly” in the eyes of participants, e.g. higher
cost-incurring generators should pay more.
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2. Any cost sharing solution for the coalition of expected generators must always
exist irrespective of the cost profiles of each generator, because infrastructure
costs associated with connecting each generator are not obliged to adhere to any
specific mathematical structure (meaning our solution cannot guarantee, e.g., a
non-empty core, excluding this solution).

3. Any cost sharing solution must identify a single unique value to ensure each
expected generator faces a binary option to join the coalition (i.e. no ex-post
negotiations are required); and finally,

4. The cost sharing solution must observe a broader capacity to pay constraint,
meaning there is an affordability cap which may leave some of the costs
recommended by the cost sharing protocol to be recovered from other sources.

Based on the above considerations, a cooperative game theory approach makes sense
as our problem structure is a standard cost sharing problem with a group of players, or
rival generators, that ultimately need to be coordinated by the benevolent transmission
network planner in a transparent manner (noting direct cooperation amongst rivals
violates competition law).

We now introduce the needed game theoretical notation. Let N = {1,2,3,...,n},n €N,
represent the set of players in the game. A coalition S is defined as a subset of N, i.e.
S € N. The null set is called the empty coalition and the set N is called the grand
coalition. A game is a pair, (N, v), where v is a real-valued function, called the
characteristic function, defined on the subsets of N, i.e., v:2¥Y — R, that satisfies v(@) =
0. The value v(S) represents the value of a coalition S, which in our case is the minimal
capital cost the coalition S can guarantee by acting on its own and coordinating with its
own members, irrespective of what other players and coalitions do. Another useful
concept is that of monotonicity. A game is monotonic if for all coalitions S,T < N, with
S € T, implying that:

v(S) <v(T)

The cost allocation function in our game is defined by the cost of the minimum
transmission infrastructure required to serve the coalition of generators, noting such a
definition means the game is monotonic. Specifically, we have a set of players, h,r € R,
and we number them, N = {1, ...,n} where n = |R|. For a coalition S, let C(S) be defined
as the minimum cost infrastructure required to connect the generators in S to the REZ
including the REZ costs. The coalition function v is then defined as v(S) := €(S). This
defines a game (N, v). The minimum infrastructure costs are provided below in the
Model Results section.

A cost allocation rule is a function, ¢(N,v) — R", defined on a game (N, v) which
assigns to each player a cost share, ¢;(N,v) € R to each player i € N such that,

Yien @i(N,v) = v(N). 9)

In the following we supress the (N, v) in our solution notation as the specific game will
always be clear. In addition, we will write ¢(S) = Y; es ¢;- Based on the two principles
above, our solution concepts must be defined for all games and satisfy the following
constraint:

¢; <v(i),i €N. (10)

Page 14



Any vector satisfying the previous constraint and ¢ (N) = v(N) from Eq.(9) is called an
imputation.

When allocating REZ costs, we have a number of desirable or ‘optimal’ criteria that any
solution should fulfill. These desirable properties are as follows (note there are other
criteria such as anonymity which may or may not be required, hence are not included
below):

1. Individual Rationality: Each generator should pay less than what it would cost
them were they to act in isolation per Eq.(9).

2. Linear: For each REZ, the cost allocation should be additive across other zones,
i.e. for each REZ sub-game, the combined cost solutions should be linear.

3. Dummy generator: if a generator causes no cost, it should not be charged
anything.

4. Efficiency: The sum of costs allocated to generators should equal the total cost,
i.e. no cost should not be covered, and the sum of allocated costs should not
exceed total costs per Eq.(10).

5. Symmetry. Generators with identical cost profiles should have the same solution
value, i.e.fori,j € N,i #j,ifv(S Ui) =v(S Uj)VS SN,i,j &S, then¢;, = ¢;.

6. Monotonicity: Generators with higher transmission network requirements should
pay more, i.e.ifi,j € N,i #j,ifv(S Ui) < v(SUj)VS SN,i,j €S,then¢; <
b;.

These six criteria are considered highly desirable, to which one could add further criteria
such as ¢(S) < v(S). However, by adding this additional criterion we violate our second
core principle above, that a solution always exists (an imputation that satisfies this
additional condition belongs to the core, which is empty for some games). By keeping
the above six criteria, we are able to guarantee a suitable solution concept that always
exists and has a simple expression and intuitive interpretation, the Shapley value, and it
also fulfills our four core principles.

The Shapley value is defined for a game (N, v) as follows:

ISI'(IN]=]S|-1)!

i = ZSQN\iT(v(S ui) —v()), (11)

where |S| stands for the cardinality of S. It is known that the Shapley value fulfills the six
criteria above (Hougaard, 2009) and can be interpreted as a type of average across a
particular contribution by a connecting generator to a coalition of connecting generators,
independent of the way that the generator joins the REZ coalition.

Other solutions such as the core, von Neumann-Morgenstern set, nucleolus, kernel, tau
value (Hoougard, 2009) and others may also be relevant. However, each of these
options was rejected for the following reasons:

e The core: it is not guaranteed to be non-empty as mentioned above.
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The von Neumann-Morgenstern set: it is not guaranteed to be non-empty.

e The nucleolus: we are not interested in the excesses of each coalition and trying
to maximise them as this is not a realistic aspect of our model given geographical
limitations — that is, generators either join the REZ or not, and cannot form
another sub-coalition given community and environmental limits (i.e. of
developing transmission assets).

e The kernel: although it always exists, it does not provide a unique payoff
outcome, however, a set of outcomes, hence violating one of our principles.

e The tau value is defined on the set of quasi-balanced games and so is not
defined for all games. In addition, it does not satisfy another possible desirable
property called aggregate monotonicity (i.e. if the value of the grand coalition
increases while all other coalitions remain the same, then no generator should
get less than before) as well as not necessarily satisfying individual rationality
(Hoougard, 2009).

We apply the Shapley value in our Model Results section given its desirable properties
and ease of calculation for games with a small number of generators, as is invariably the
case with REZs.

4. Model Results

Recall from Fig.5 that a defining characteristic of Queensland renewables is the
complementarity of wind and solar resources. This makes for an interesting case study
because the efficient level of connecting generation capacity (MW) will always exceed
REZ line transfer capacity given the NEM’s open access, multi-zonal market setup. We
model three REZ scenarios (1) static, (2) seasonal, and (3) real-time line ratings.

4.1 Scenario 1: optimal renewables with static line ratings

In our REZ, entry is assumed to occur under conditions of the NEMs ‘Open Access’
regime, meaning renewable plant curtailment in any trading interval is shared amongst
the coalition members on a volume-weighted basis, with the zonal spot price prevailing.
There are no side-payments when plant is constrained-off. This places a considerable
burden on renewable investors to predict market congestion conditions because the risk
of curtailment cannot be re-allocated to consumers.

Using data outlined in Section 3, we run our REZ Optimisation Model through 100
iterations to identify the optimal mix of wind and solar PV. We opt for 100 iterations due
to the nonlinearity of the problem given the rich blend of resources, line ratings, merit
order effects, curtailment and storage options. And due to the non-smooth nature of
certain constraints and properties, we rely on an evolutionary algorithm to find optimal
solutions. As results illustrate in Fig.7, there are multiple credible equilibria across the
five entrant projects vis-a-vis size and scale.

A logical line of inquiry is whether the existence of multiple equilibria might create too
much uncertainty for renewable investors to commit within the REZ. Yet a close
inspection of Fig.2, and of Fig.7, reveals that:

1. In practice, the number of potential projects, and potential project sites, is

known by the transmission planner — see Fig.2. What is uncertain is the
final capacity of wind and solar projects in aggregate;
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2. In Fig.7 (y-axis), all iterations involved a minimum level of wind
(~1800MW) and tend to cluster around 1950MW;

3. Similarly, in Fig.7 (x-axis), all iterations involved a minimum level of solar
(~650MW) and cluster around 850-875MW; and

4. ata 10% Probability of Exceedance (PoE10), which in a sense reflects an
upper limit optimal results, iterations typically comprise ~1950MW of wind,
and ~875MW of solar.

Consequently, while there may be some level of plant mix uncertainty at the very
margins, the number of sites is fixed, and iterations trended towards at least 1800MW of
wind, and 850MW of solar. And in practice, any wind and solar plant capacity above
these levels face no more risk than any other project in the NEM’s open access regime.

The binding constraint in this set of iterations is renewable plant curtailment (i.e. ‘spill)
due to line congestion. Some level of curtailment inside a REZ is efficient. Butin
practice, there are ‘tolerable limits’ to curtailment applied by risk-averse project banks
and risk-neutral equity investors. Recall the REZ Optimisation model incorporates a
variable for this purpose, viz. the curtailment constraint (§,.) in Eq.(6). For our purposes,
as outlined in Appendix Il we have set (6,) to < 5.25% for wind entrants and < 8% for
solar PV entrants, consistent with the assumptions in Simshauser and Newbery (2024).
In Fig.7, Eq.(6) is binding for wind and solar entrants, which in turn regulates entry to
1950MW of wind, and 875MW of solar (at POE10).

Figure 7: REZ static line ratings — optimal wind capacity vs. solar PV capacity

Wind (MW)
2,500
2,000
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0 200 400 600 800 1,000 1,200

Solar PV (MW)

Fig.7 contrasted 100 iteration results from the REZ model by examining wind capacity
(y-axis) and solar capacity (x-axis). In Fig.8, we take the same set of results and
illustrate 100 iterations of production output (GWh) on the y-axis, and on the x-axis, we
combine wind and solar capacity (MW). What this shows is that, although there appears
to be some variation in the plausible mix of wind and solar (per Fig.7), the annual
production from those combinations lies within a tight range, viz. 7160GWh +/-1%.
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Figure 8: REZ static line ratings — energy (GWh) vs renewable capacity (MW)
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Our allocation of REZ user charges underpinning Figs.7-8 are presented in Tab.4. The
various power projects are listed from Lines 1-6 (note Entrant E ‘Battery’ = 0). Capacity
(MW) appears in column ‘a’, while ‘capacity to pay’ user charges are listed in columns ‘b’
and ‘c’. Column ‘d’ is included only by way of historic reference to prior research i.e.
user charges levied by way of simple output allocation (i.e. MWh output). The contrast
with Shapley Values (column ‘e’) is striking. Column ‘f’ notes there is a capacity to pay
shortfall of $9.9m pa, and when applied on a project-by-project basis using the minimum
of the Shapley Value and capacity to pay, user charges amount to only 78% (column g)
of the breakeven cost of $73m (column e, line 7).

Table 4: REZ Shapley Values (Static Line Ratings)

Static Line Ratings Capacity =~ Capacity to Pay Capacity to Pay Output Shapley Value Surplus Recovery
(MW) ($/MW) ($M) ($M) ($M) ($M) (%)

Capex = $890m a b c=(axb) d e f=(c-e) g=Imin(ec)+ e

1 Project A Wind 400 MW $27,500 11.0 10.6 6.7 4.3 } $6.0

2 Project B Solar 400 MW $10,500 4.2 8.7 25 1.7

3 Project C Wind 900 MW $27,500 24.8 25.2 32.8 -8.1 d

4 Project D Solar 500 MW $10,500 53 10.9 7.0 -1.7 :l» -$9.8

5 Project E Battery 0 MW $12,500 0.0 0.0 0.0 0.0

6 Project F Wind 650 MW $27,500 17.9 17.6 24.0 -6.1

7 TOTAL $63.1 $73.0 $73.0 -$9.9 78%

Prima facie, results in Tab.4 suggest the merchant REZ is financially intractable. If there
were no investment alternatives, and the REZ was nonetheless considered welfare
enhancing, there are policy levers available to overcome such shortfalls and these will
be discussed in Section 5. For now, variations to transmission line ratings are feasible,
which may bridge the apparent gap that exists in Tab.4. This leads us to Scenario 2,

and the impact of moving from static to seasonal line ratings.

4.2 Scenario 2: optimal renewables with seasonal line ratings

In Scenario 2, we alter our line ratings in the mild and winter seasons as outlined in
Tab.1. This means in winter, line transfer capacity increases to 1916MW and in the mild
seasons, to 177566MW. Our summer rating remains at the static rating of 1536MW.

Fig.9, presents the optimal combinations of wind solar, and at POE10 equates to
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2225MW of wind (+275MW more than static line ratings, with no change to solar). Such
results reflect the fact that the additional line transfer capacity coincides with windy
conditions (Fig.3).

Figure 9: REZ seasonal line ratings — optimal wind vs. solar PV
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The productivity of the REZ has increased commensurately, with no change to
infrastructure costs. Fig.10 illustrates that energy output has increased by 11%, from
7200 to 8000GWh.

Figure 10: REZ seasonal line ratings — energy (GWh) vs capacity
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The change from static to seasonal line ratings is welfare enhancing, as depicted in
Tab.5 (+$149.3m pa). Consumer welfare increases by $72.4m. Consumers prefer the
more productive REZ because the fixed costs of transmission investment are spread
across more units of output. Additionally, recall onshore wind and solar PV are lowest
cost entrants in the NEM, and exhibit marginally lower entry costs with a more
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productive REZ. Producer surplus also rises, albeit with mixed results as a class. Wind
producers may develop projects that would otherwise be stranded ($86.1m). Solar
producers ($-1.2m) face marginally more congestion with additional wind entering the
REZ, albeit this remains within acceptable or ‘tolerable’ banking limits. And finally,
differential merit order effects arise from the entry of wind and solar which, in aggregate,
result in wealth transfers from producers to consumers ($8.1m).

Table 5: Welfare analysis (static vs seasonal line ratings)
Static Ratings vs Seasonal Line Ratings

($ Million pa)
1 Chg in Consumer Surplus 72.4
2 Chg in Producer Surplus (Wind) 86.1
3 Chg in Producer Surplus (Solar) -1.2
4 Wealth Transfers -8.1
5 Gross Chg in Producer Surplus 76.9
6 Change in Total Welfare (1+5) 149.3

REZ user charges underpinning Figs.9-10 are presented in Tab.6. As with static line
ratings, capacity to pay is binding for generators C, D and F, but are moving closer to
our Shapley Values. The cost recovery ratio has increased from 78 to 88%.

Table 6: REZ Shapley Values (Seasonal Line Ratings)

Seasonal Line Ratings Capacity = Capacity to Pay Capacity to Pay Output Shapley Value Surplus Recovery

(MW) ($/MW) ($M) ($M) ($M) ($M) (%)
Capex = $890m a b c=(axb) d e f=(c-e) g=Xmin(ec)+Je
8 Project A Wind 400 MW $27,500 11.0 9.5 6.2 4.8 :|_ $7.0
9 Project B Solar 500 MW $10,500 5.3 9.8 3.0
10 Project C Wind 1,000 MW $27,500 27.5 25.2 34.5 -7.0 "
11 Project D Solar 400 MW $10,500 4.2 7.8 5.3 -1.1 } -$8.1
12 Project E Battery 0 MW $12,500 0.0 0.0 0.0 0.0
13 Project F Wind 850 MW $27,500 23.4 20.6 24.0 -0.6
14 TOTAL $71.3 $73.0 $73.0 -$1.7 88%

Our next Scenario examines the impact of moving from seasonal to real-time line
ratings.

4.3 Scenario 3: optimal renewables with real-time line ratings

Scenario 3 simulates real-time line ratings. This has profound effects on the renewable
hosting capacity, the energy output and REZ productivity generally. Fig.11 illustrates the
change in the optimal capacity mix, with wind rising to 3275MW, and solar PV rising to
1425MW.
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Figure 11: REZ real-time line ratings — optimal wind vs. solar PV
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Fig.12 highlights the change in REZ productivity, with output rising by 50% to
12,000GWh.

Figure 12; REZ real-time line ratings — energy (GWh) vs capacity
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Welfare analysis similarly reveals material changes, with consumer surplus up $323.7m.
Both wind and solar producer surplus increases, although to be clear, there are mixed
results for solar producers with (1) initial incumbents slightly worse off, but (2) otherwise
stranded resources able to be monetised with the net gain being +$62.2m. Wealth
transfers from producers to consumers arising from merit order effects amounts to
-$18.6m.
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Table 7: Welfare analysis (static vs real-time line ratings)

Static Ratings vs Real-Time Ratings

($ Million pa)
1 Chg in Consumer Surplus 323.7
2 Chg in Producer Surplus (Wind) 385.2
3 Chg in Producer Surplus (Solar) 62.2
4 Wealth Transfers -18.6
5 Gross Chg in Producer Surplus 428.8
6 Change in Total Welfare (1+5) 752.4

Perhaps the main result from this scenario is that generator capacity to pay now
exceeds the REZ annual charges and the Shapley Value of each entrant, as illustrated

in Tab.8.
Table 8: REZ Shapley Values (real-time line ratings)
Real-Time Line Ratings Capacity = Capacity to Pay Capacity to Pay Output Shapley Value Surplus Recovery
(MW) ($/MW) ($M) ($M) ($M) ($M) (%)
Capex = $890m a b c=(axb) d e f=(c-e) g=Imin(ec)+3e
22 Project A Wind 750 MW $27,500 20.6 12.1 6.7 13.9 } $19.3
23 Project B Solar 750 MW $10,500 7.9 9.9 2.5 5.3
24 Project C Wind 1,200 MW $27,500 33.0 20.4 33.0 0.0 4
25 Project D Solar 650 MW $10,500 6.8 8.6 6.8 0.0 } $0.1
26 Project E Battery 0 MW $12,500 0.0 0.0 0.0 0.0
27 Project F Wind 1,350 MW $27,500 37.1 221 24.0 13.1
28 TOTAL $105.5 $73.0 $73.0 $32.5 100%
4.4 Does battery storage matter?

In each of Scenarios 1-3, batteries were excluded. Given intermittency, the addition of
battery storage should facilitate additional entry, increase REZ productivity, and enhance
REZ cost recovery. However, while optimisation results show gains across all REZ
transmission line rating scenarios are positive, they are marginal and decrease with line
rating capacity. This is illustrated in Fig.13.

Figure 13:
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Note in Fig.13 that within the REZ optimisation model, 4h batteries dominated iterations,
with optimal battery capacity trending towards 400-575MW. Batteries had the effect of
increasing REZ productivity by ~3.3-5.3%. Larger gains were extracted through
pursuing real-time line ratings, with the shift from static to seasonal line ratings (+5.7%),
and from seasonal to real-time line ratings (+44.2%). Fig.14 overlays the iteration
results for the battery cases relevant to the non-battery cases.

Figure 14: REZ energy (GWh) with battery storage
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It is to be noted that oversized batteries would reverse these results (see in particular
Simshauser, 2025). Specifically, oversized batteries compete with wind and solar for
REZ access, and this would have the effect of reducing the generation fleet’s capacity to

pay.

5. Policy implications

Our analysis demonstrated the gains from altering REZ line transfer capacity, from
static, to seasonal and finally, to real-time ratings. Batteries enhanced REZ productivity,
but by comparison to line ratings, gains were marginal and diminishing in nature.
Historically, establishing real-time line ratings was costly. This is no longer the case. An
emerging set of low-cost technologies now exists, including transmission line-mounted
weather stations, making real-time ratings viable. Evidently, for existing power systems
with thermally constrained transmission lines and credible renewable resources, this
should form a priority for investment. It is to be noted that not all transmission lines are
thermally constrained — often other constraints emerge (e.g. voltage stability, transient
stability limits etc). However, where lines are thermally constrained, real-time ratings
offer great potential at a very low marginal cost.

In prior REZ research in the Australian context, user charges (i.e. REZ cost allocation)
was simplified and based on output. The focus of analysis was on deriving the optimal
mix of plant. A quick review of Table results (Tabs.4, 6, 8) in Section 4 reveals there
was no scenario in which an output-based cost allocation method was tractable for solar
PV projects. Yet we know its role in the energy transition to be crucial. To that end, we
combined a mix of renewable and battery resources, and different line rating
methodologies with the Shapley Value method to identify an efficient, fair and
defendable set of user charges for generators connecting to a merchant REZ. And
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importantly, we did so by introducing capacity to pay limits reflective of conditions in the
Australian market.

For low cost transmission augmentations, capacity to pay limits are unlikely to be a
problem. This was the experience with early REZs in the NEM’s Queensland region.
However, as with all scarce resources, there is an upward sloping supply curve for
Renewable Energy Zones. As distances rise, and as costs increase, user charges rise
making financial tractability of REZs more difficult to navigate on a purely merchant
basis.

In the present exercise with static and seasonal line ratings, our Shapley Values (and by
definition, an output allocation method) faced binding capacity-to-pay constraints. In the
static line rating scenario, cost recovery was ~78%. This rose to 88% with seasonal line
ratings. Adding storage, while not specifically identified, added ~2 percentage points to
these cost recovery ratios. It was not until we introduced real-time ratings, which
materially increased renewable hosting capacity, were we able to navigate the capacity
to pay problem.

This raises a tangential policy issue. What if some other network limitation (e.g.
transient stability limit) constrained line ratings such the full capacity of real-time ratings
was not viable? Would this be fatal for a merchant REZ? The short answer is, on a
purely merchant basis, more than likely. However, other policy options exist that migrate
the REZ to a semi-merchant model if, and only if, the overall portfolio of projects is
welfare enhancing at the whole-of-system level. These policy options include:

1. Concessional finance, which can be deployed to lower the aggregate annual user
charges. Concessional agencies are quite common, and Australia has the
‘Clean Energy Finance Corporation’ which exists for this purpose. Concessional
finance would have the effect of lowering the cost of capital, and in turn, user
charges holding all else equal.

2. Allocating some component of project capital costs to the Regulatory Asset Base.
Specifically, where a residual transmission investment cost may exist within a
REZ program, and the overall program of transmission, wind, solar and storage
investments are otherwise thought to be beneficial, allocation to the Regulatory
Asset Base provides a suitable pathway. This allocation may be transient to deal
with uncertainty of the timing of renewable project entry, or permanent where a
residual exists. After all, this policy represents the default policy for 100% cost
recovery in most jurisdictions.

6. Conclusion

Development of REZ in Australia's NEM represents a critical policy initiative aimed at
facilitating the energy transition in an efficient manner. REZ are designed to coordinate
multiple renewable projects that would otherwise act independently, thereby minimizing
marginal transmission costs, and the various community, environmental, and cultural
sensitivities associated with large-scale infrastructure development. Queensland's
approach to REZ development, characterized by a merchant model, has enabled rapid
deployment of renewable projects. lIts distinctive feature is that connecting generators,
not consumers, underwrite the capital cost through annual user charges.

When renewable entry is perfect and REZ distances are small, investment commitment
by a risk neutral benevolent transmission planner is clear cut. As REZ distances are
extended from the transmission backbone, capital costs rise, and user charges may
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exceed generators reasonable capacity to pay. Maximising the renewable hosting
capacity of a REZ is therefore an important means by which to navigate such
constraints. And, other policy options exist to deal with any residual shortfall.
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Appendix I: Goncalves & Menezes (2022) NEM spot price coefficients
Hour Wind Solar

Min95 Est. Max95 Min95 Est.  Max95
-0.00021 -0.00028 -0.00033 0.00350 -0.00067 -0.00095
-0.00020 -0.00030 -0.00033| 0.00325 -0.00056 -0.00073
-0.00019 -0.00033 -0.00036( 0.00555 -0.00051 -0.00076
-0.00024 -0.00035 -0.00039| 0.00421 -0.00041 -0.00061
-0.00027 -0.00038 -0.00042 0.00252 -0.00041 -0.00057
-0.00028 -0.00038 -0.00044| 0.00412 -0.00032 -0.00050
-0.00019 -0.00031 -0.00040| 0.00534 -0.00015 -0.00070
-0.00015 -0.00039 -0.00049| 0.00861 -0.00113 -0.00161
-0.00023 -0.00029 -0.00034( 0.00507 -0.00104 -0.00130
-0.00015 -0.00022 -0.00032| 0.00456 -0.00082 -0.00116
-0.00010 -0.00029 -0.00035( 0.00673 -0.00093 -0.00129
-0.00009 -0.00033 -0.00040| 0.00696 -0.00079 -0.00119
-0.00015 -0.00033 -0.00039( 0.00903 -0.00086 -0.00119
-0.00009 -0.00032 -0.00038| 0.00610 -0.00067 -0.00104|
0.00004 -0.00022 -0.00031| 0.00679 -0.00056 -0.00124
0.00029 -0.00005 -0.00019| 0.01042 0.00013 -0.00105
0.00048 0.00003 -0.00018( 0.01389 -0.00015 -0.00150
0.00066 -0.00001 -0.00026| 0.01916 0.00049 -0.00101
0.00021 -0.00044 -0.00061| 0.01114 0.00074 -0.00045
0.00030 -0.00038 -0.00053| 0.00941 0.00040 -0.00094
0.00005 -0.00028 -0.00033 0.00527 -0.00060 -0.00094
-0.00008 -0.00024 -0.00028| 0.00348 -0.00068 -0.00092
-0.00021 -0.00026 -0.00029| 0.00480 -0.00074 -0.00092
-0.00017 -0.00024 -0.00028 0.00495 -0.00071 -0.00090
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Appendix Il - PCF Model Logic

In the PCF Model, prices and costs increase annually by a forecast general inflation rate
(CPI).

=+ (Gl M
Energy output qj- from each plant (i) in each period (j) is a key variable in driving revenue
streams, unit fuel costs, fixed and variable Operations & Maintenance costs. Energy
output is calculated by reference to installed capacity k!, capacity utilisation rate CFji for
each period j. Plant auxiliary losses Aux! arising from on-site electrical loads are
deducted. Plant output is measured at the Node and thus a Marginal Loss Factor MLF®
coefficient is applied.

q; = CF}.k'. (1 — Aux"). MLF', @

A convergent electricity price for the /' plant (p'¢) is calculated in year one and
escalated per Eq. (1). Thus, revenue for the i plant in each period j is defined as
follows:

Rji = (q}.pi‘g.nf), (3)

If thermal plants are to be modelled, marginal running costs need to be defined per Eq.
(4). The thermal efficiency for each generation technology ¢’ is defined. The constant
term ‘3600 is divided by ¢’ to convert the efficiency result from % to kJ/kWh. This is
then multiplied by raw fuel commodity cost f¢. Variable Operations & Maintenance costs
vt, where relevant, are added which produces a pre-carbon short run marginal cost.

Under conditions of externality pricing CP;, the CO- intensity of output needs to be

defined. Plant carbon intensity g‘ is derived by multiplying the plant heat rate by
combustion emissions g' and fugitive CO, emissions . Marginal running costs in the j
period is then calculated by the product of short run marginal production costs by
generation output q]i- and escalated at the rate of njc.

3600,
19]'i = {K( 100{)0)']“ + Vi) + (9" CPJ)

Fixed Operations & Maintenance costs FOMJ-i of the plant are measured in $/MW/year of
installed capacity FC! and are multiplied by plant capacity k and escalated.

(3600/(1,)

FOM} = FC'.k'.nf, (5)

Earnings Before Interest Tax Depreciation and Amortisation (EBITDA) in the /' period
can therefore be defined as follows:

EBITDA; = (R} — 9} — FOM}), (6)

6 The derivation of the constant term 3,600 is: 1 Watt = 1 Joule per second and hence 1 Watt Hour = 3,600
Joules.
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Capital Costs (X(‘)) for each plant i are Overnight Capital Costs and incurred in year 0.
Ongoing capital spending (x]‘) for each period j is determined as the inflated annual
assumed capital works program.

xt = ch.nf (7)

Plant capital costs X} give rise to tax depreciation (d}) such that if the current period was
greater than the plant life under taxation law (L), then the value is 0. In addition, x} also
gives rise to tax depreciation such that:

i _ (X5 X
4 = (L) + <L—u’-1>)' (8)

From here, taxation payable (r]‘) at the corporate taxation rate (z.) is applied to
EBITDA; less Interest on Loans (If) later defined in (16), less d}. To the extent (z/)
results in non-positive outcome, tax losses (L}) are carried forward and offset against
future periods.

1-]!' = Max(O, ( EBITDA]l: - Iji - d]l: - L;—l)'TC)' ®)
L: = Min(0, (EBITDA! — I} —d} — Li_;).7.), (10)
Relevant inputs are as follows:

Table A1: Plant Technical & Cost Assumptions (pre-REZ costs)

Table 1A - Renewable Fleet Wind Solar Battery
Project Capacity (MW) 1,000 400 400
- Storage Capacity (Hrs) - - 4
Overnight Capital Cost ($/kW) 3,373 1,133 525
- Storage ($/kWh) - - 380
- Contingency 10% - -
Plant Capital Cost ($ ™M) 3,710 453 409
Operating Life (Yrs) 35 30 20
Annual Capacity Factor (%) 33-43% 21-27% 14.7%
Transmission Loss Factor (MLF) 0.970 0.950 1.000
Transmission REZ Costs ($/MW/a) Modelled
Fixed O&M ($/MW/a) 25,000 20,000 10,000
Variable O&M ($/MWh) 0.0 0.0 0.0
FCAS (% Rev) -1.0% -1.0% 4.0%

Source: Gohdes (2022, 2023).

The debt financing model computes interest and principal repayments on different debt
facilities depending on the type, structure and tenor of tranches. There are two types of
debt facilities — (a) corporate facilities (i.e. balance-sheet financings) and (2) project
financings. Debt structures available in the model include bullet facilities and semi-
permanent amortising facilities (Term Loan B and Term Loan A, respectively).

Corporate Finance typically involves 5- and 7-year bond issues with an implied ‘BBB’
credit rating. Project Finance include a 5-year Bullet facility requiring interest-only
payments after which it is refinanced with consecutive amortising facilities and fully
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amortised over an 18-25 year period (depending on the technology) and a second facility
commencing with tenors of 5-12 years as an Amortising facility set within a semi-
permanent structure with a nominal repayment term of 18-25 years. The decision tree
for the two Term Loans was the same, so for the Debt where DT = 1 or 2, the calculation
is as follows:

>1,DT! = DTL , — P
ij{ Joo ot et (11)
=1,DT{ = Di.S

D} refers to the total amount of debt used in the project. The split (S) of the debt
between each facility refers to the manner in which debt is apportioned to each Term
Loan facility or Corporate Bond. In most model cases, 35% of debt is assigned to Term
Loan B and the remainder to Term Loan A. Principal P;_; refers to the amount of

principal repayment for tranche T in period j and is calculated as an annuity:

Pji _ DT; _ z{ VI
[ (1+ R% +CZ ) ]
\l +Cz J

In (12), Ry; is the relevant interest rate swap (Syr, 7yr or 12yr) and Cr; is the credit
spread or margin relevant to the issued Term Loan or Corporate Bond. The relevant

interest payment in the j period (Ij") is calculated as the product of the (fixed) interest
rate on the loan or Bond by the amount of loan outstanding:

(12)

G:Dﬁx@%+$ﬂ
(13)

Total Debt outstanding D/, total Interest I} and total Principle P/ for the /" plant is
calculated as the sum of the above components for the two debt facilities in time j. For

clarity, Loan Drawings are equal to D} in year 1 as part of the initial financing and are
otherwise O.

One of the key calculations is the initial derivation of D} (as per eq.11). This is
determined by the product of the gearing level and the Overnight Capital Cost (X5)
Gearing levels are formed by applying a cash flow constraint based on credit metrics
applied by project banks and capital markets. The variable y in our PF Model relates
specifically to the legal structure of the business and the credible capital structure
achievable. The two relevant legal structures are Vertically Integrated (VI) merchant
utilities (issuing ‘BBB’ rated bonds) and Independent Power Producers using Project
Finance (PF).

P> W'y j |FFO} = (EBITDA! - xf)

EBITDA‘ -

FFO!
= VI, —ll = 6-VIV
I J

iif y (14)

= PF,Min(DSCR},LLCR}) = 67",V j

DSCR, = (EBITDAL-xi-11) LLCR, :2?’:1[(EBITDA§—x}—r§).(1+xd)-f]

iyl i
Pj+l; Dj
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Credit metrics” (6/") and (") are exogenously determined by credit rating agencies
and are outlined in Table 2. Values for 6}”” are exogenously determined by project

banks and depend on technology (i.e. thermal vs. renewable) and the extent of energy
market exposure, that is whether a Power Purchase Agreement exists or not. For

clarity, FFO} is ‘Funds From Operations’ while DSCR} and LLCR; are the Debt Service
Cover Ratio and Loan Life Cover Ratios. Debt drawn is:

Dj = xi — X, [EBITDA — [ - P — 7] . (1 + k)™ — XL, . (1 4+ K)O (15)
Relevant inputs are as follows:
Table A2: Project Finance Parameters

Project Finance
Debt Sizing Constraints

-DSCR (times) 1.8

- Gearing Limit (%) 0.4

- Default (times) 1.05
Project Finance Facilities - Tenor

- Term Loan B (Bullet) (Yrs) 5

- Term Loan A (Amortising) (Yrs) 10

- Notional amortisation (Yrs) 15
Project Finance Facilities - Pricing

- Term Loan B Swap (%) 4.09%

- Term Loan B Spread (bps) 180

- Term Loan A Swap (%) 4.19%

- Term Loan A Spread (bps) 209

- Refinancing Rate (%) 6.1%
Expected Equity Returns (%) 8.0%

Balance Sheet Finacing

Credit Metrics (BBB Corporate) Merch Reg.
-FFO /I (times) 4.2 24
- Gearing Limit (%) 40.0 65.0
- FFO / Debt (%) 20% 9%

Bond Issues
-5 Year (%) 5.45%

-7 Year (%) 5.59%
-10 Year (%) 5.65%

Commonwealth Bonds
- 10 Year (%) 4.14%

Expected Equity Returns (%) 10.0%

Source: Gohdes (2022, 2023), Bloomberg.

At this point, all of the necessary conditions exist to produce estimates of the long run
marginal cost of power generation technologies along with relevant equations to solve
for the price (p'¢) given expected equity returns (K,) whilst simultaneously meeting the
constraints of 6/ and w}" or 67" given the relevant business combinations. The primary

7 For Balance Sheet Financings, Funds From Operations over Interest, and Net Debt to EBITDA
respectively. For Project Financings, Debt Service Cover Ratio and Loan Life Cover Ratio.
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objective is to expand every term which contains p*. Expansion of the EBITDA and Tax
terms is as follows:

0= —x{+ 20, [(p'e.qi.nF) — 0} — Fom] — 1} — P — ((p'®.qb.7f) — 9f — FOM{ — I} —d} - Li_,) 7] (1 +
K)™9 =3 xf. (1 4+ K)~D — Df (16)

The terms are then rearranged such that only the p'¢ term is on the left-hand side of the
equation:

Let IRR = K,

Sy (1= 7). P g (L + K0 = Xy =By [~ (1 = 10). 8 — (1 = 7). FoM} — (1 = 7). (I}) = P} +
Tedi + T Llg). (1+ Ke)‘(ﬁ] + 30l (1 4+ K™D + Df) 17)

The model then solves for pi such that:

ie — th;

p-= Y (1-10).Penl (14K,) =D +

z;":l(u—TC).0}+(1—TC).F0M;'.+(1—rc).(z})+p}—rc.dj-—rcL§-_1).(1+Ke)‘(D) SN xk (14+K,) =0+ D (18)
¥ (-1o).qbmR (14K) - ¥, (-to).qbmR (14K)~D
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Appendix lll - Model Outputs

Static Line Ratings

Wind 1,950 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG
1 Potential Wind Output (GWh) 6,116 6,008 5,702 5,776 5,927 5,590 5,679 3,010 43,808
2 Practical Wind Output (GWh) 5,960 5,875 5,618 5,671 5,820 5,499 5,590 2,952 42,985
3 REZCongestion (GWh) 156 133 85 104 107 91 89 58 823
4 Energy Curtailed (% of Prod) 2.5% 22% 1.5% 1.8% 1.8% 1.6% 1.6% 1.9% 1.9%
5 Economic Wind Output (GWh) 5,957 5,807 5,439 5,429 5,634 5,046 5,024 2,788 41,125
6  Spill -ve spot prices (GWh) 3 68 179 242 185 453 566 164 1,860
7 Energy Spilled (%) 0.1% 1.2% 3.3% 4.5% 3.3% 9.0% 11.3% 5.9% 4.5%
8 Total Curtail & Spill (GWh) 159 201 264 346 293 543 654 222 2,683
9 Total Curtail & Spill (% of Prod) 2.6% 3.4% 4.6% 6.0% 4.9% 9.7% 11.5% 7.4% 6.1%
10 Potential ACF (% - ACF) 35.8% 35.2% 33.3% 33.8% 34.7% 32.7% 33.2% 35.5% 34.3%
11 Economic ACF (% - ACF) 34.9% 34.0% 31.8% 31.8% 33.0% 29.5% 29.3% 32.9% 32.2%
12 ACF Loss (% - ACF) 0.9% 1.2% 1.5% 2.0% 1.7% 3.2% 3.8% 2.6% 2.1%
13 Revenue $m 570.5 551.8 298.1 595.1 971.4 612.7 588.5 395.9 4,584.1
14 Costs (incl. REZ) $m 605.2 605.9 607.5 605.9 605.9 605.9 607.5 300.4 4,544.1
15 Economic Profit $m -34.7 -54.1 -309.4 -10.7 365.5 6.9 -19.0 955 40.0
16 Unit Revenue ($/MWh) 95.8 95.0 54.8 109.6 172.4 1214 1171 142.0 1115
17  Unit Cost ($/MWh) 101.6 104.3 117 1116 107.5 120.1 120.9 107.8 1105
18 Economic Profit ($/MWh) 5.8 9.3 -56.9 -2.0 64.9 14 -3.8 343 1.0

Solar PV 880 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG
19 Potential Solar Output (GWh) 2,184 2,261 2,149 2,098 2,009 2,156 2,053 976 15,887
20 Practical Solar Output (GWh) 2,125 2,210 2,114 2,060 1,967 2,120 2,016 950 15,563
21 REZCongestion (GWh) 59 51 35 38 42 36 37 26 324
22 Energy Curtailed (% of Prod) 2.7% 2.3% 1.6% 1.8% 21% 1.7% 1.8% 2.7%' 2.0%
23 Economic Solar Output (GWh) 2,119 2,116 1,889 1,721 1,706 1,370 1,253 754 12,929
24 Spill -ve spot prices (GWh) 5 95 225 339 261 750 764 195 2,634
25 Energy Spilled (%) 0.3% 4.5% 11.9% 19.7% 15.3% 54.7% 60.9% 259%  20.4%
26 Total Curtail & Spill (GWh) 64 146 260 377 303 786 800 222 2,958
27 Total Curtail & Spill (% of Prod) 3.0% 6.4% 12.1% 18.0% 15.1% 36.4% 39.0% 22.7% 18.6%
28 Potential ACF (% - ACF) 27.6% 28.7% 27.3% 26.7% 25.5% 27.5% 26.1% 24.8% 26.8%
29 Economic ACF (% - ACF) 27.5% 27.4% 24.4% 22.3% 22.1% 17.8% 16.2% 19.7% 22.2%
30 ACFLoss (% - ACF) 0.1% 1.2% 2.9% 4.4% 3.4% 9.7% 9.9% 5.1% 4.6%
31 Revenue $m 198.7 1775 89.0 125.7 165.3 95.5 81.3 58.1 991.1
32 Costs $m 1105 110.6 110.9 110.6 110.6 110.6 110.9 54.8 829.5
33 Economic Profit $m 88.3 66.9 -21.9 15.1 54.7 -15.1 -29.6 3.2 161.5
34 Unit Revenue ($/MWh) 93.8 83.9 471 73.0 96.9 69.7 64.9 77.0 76.7
35  Unit Cost ($/MWh) 52.1 52.3 58.7 64.3 64.8 80.7 88.5 727 64.2
36 Economic Profit ($/MWh) 416 31.6 -11.6 8.8 32.1 -1141 -23.6 43 125
37 Portfolio Output (Line 5+23) (GWh) 8,076 7,923 7,328 7,150 7,340 6,417 6,277 3,542 54,054
37 Portfolio Profit (Lines 15+33) $m 35.8 223 -68.5 6.8 96.9 9.7 -27.4 385 135
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Seasonal Line Ratings

Wind 2,225 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG
1 Potential Wind Output (GWh) 6,973 6,852 6,502 6,588 6,758 6,376 6,470 3,428 49,948
2 Practical Wind Output (GWh) 6,792 6,696 6,406 6,486 6,626 6,280 6,377 3,346 49,010
3 REZCongestion (GWh) 181 156 96 102 132 96 93 82 938
4 Energy Curtailed (% of Prod) 2.6% 2.3% 1.5% 1.6% 2.0% 1.5% 1.4% 2.4% 1.9%
5 Economic Wind Output (GWh) 6,788 6,615 6,195 6,203 6,411 5,755 5,723 3,157 46,847
6  Spill -ve spot prices (GWh) 4 81 211 283 215 526 655 189 2,164
7  Energy Spilled (%) 0.1% 1.2% 34% 4.6% 3.4% 9.1% 11.4% 6.0% 4.6%
8 Total Curtail & Spill (GWh) 184 237 307 385 347 622 748 271 3,101
9 Total Curtail & Spill (% of Prod) 2.6% 3.5% 4.7% 5.9% 5.1% 9.7% 11.6% 7.9% 6.2%
10 Potential ACF (% - ACF) 35.8% 35.2% 33.3% 33.8% 34.7% 32.7% 33.1% 35.5% 34.3%
11 Economic ACF (% - ACF) 34.9% 33.9% 31.7% 31.8% 32.9% 29.5% 29.3% 32.7% 32.1%
12 ACF Loss (% - ACF) 0.9% 1.2% 1.6% 2.0% 1.8% 3.2% 3.8% 2.8% 22%
13 Revenue $m 649.9 627.8 339.0 681.5 1,111.1 700.1 671.4 450.0 5,230.8
14 Costs (incl. REZ) $m 691.2 692.0 693.9 692.0 692.0 692.0 693.9 343.2 5,190.1
15 Economic Profit $m -41.3 -64.2 -354.9 -10.5 419.2 8.1 -22.5 106.8 40.7
16 Unit Revenue ($/MWh) 95.7 949 54.7 109.9 1733 121.7 117.3 142.5 111.7
17  Unit Cost ($/MWh) 101.8 104.6 112.0 111.6 107.9 120.2 121.3 108.7 110.8
18 Economic Profit ($/MWh) -6.1 -9.7 -57.3 -1.7 65.4 14 -3.9 33.8 0.9

Solar PV 880 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG
19 Potential Solar Output (GWh) 2,182 2,260 2,147 2,097 2,010 2,154 2,052 975 15,877
20 Practical Solar Output (GWh) 2,129 2,215 2,119 2,068 1,970 2,123 2,020 944 15,588
21 REZCongestion (GWh) 52 45 28 29 40 32 32 31 289
22 Energy Curtailed (% of Prod) 2.4% 2.0% 1.3% 1.4% 2.0% 1.5% 1.6% 3.1%' 1.8%
23 Economic Solar Output (GWh) 2,124 2,119 1,890 1,725 1,706 1,368 1,250 748 12,931
24 Spill -ve spot prices (GWh) 5 96 228 343 263 755 770 196 2,657
25 Energy Spilled (%) 0.2% 4.5% 12.1% 19.9% 15.4% 55.2% 61.6% 26.2%' 20.6%
26 Total Curtail & Spill (GWh) 58 141 256 372 304 786 802 227 2,947
27 Total Curtail & Spill (% of Prod) 2.6% 6.3% 11.9% 17.7% 15.1% 36.5% 39.1% 23.3% 18.6%
28 Potential ACF (% - ACF) 27.7% 28.7% 27.4% 26.8% 25.6% 27.5% 26.1% 24.7% 26.8%
29 Economic ACF (% - ACF) 27.6% 27.5% 24.5% 22.4% 221% 17.7% 16.2% 19.6% 22.2%
30 ACF Loss (% - ACF) 0.1% 1.2% 3.0% 4.5% 3.4% 9.8% 10.0% 51% 4.6%
31 Revenue $m 198.9 1773 88.8 126.0 166.3 95.3 81.2 57.4 991.3
32 Costs $m 109.3 109.4 109.7 109.4 109.4 109.4 109.7 54.3 820.6
33 Economic Profit $m 89.6 67.9 -20.9 16.6 56.9 -14.1 -28.5 3.2 170.8
34 Unit Revenue ($/MWh) 93.6 837 47.0 731 97.5 69.6 65.0 76.8 76.7
35 Unit Cost ($/MWh) 514 51.6 58.0 63.4 64.1 80.0 87.8 725 63.5
36 Economic Profit ($/MWh) 422 32.1 -11.0 9.6 334 -10.3 -22.8 4.2 13.2
37 Portfolio Output (Line 5+23) (GWh) 8,912 8,734 8,085 7,928 8,117 7,123 6,973 3,905 59,777
37 Portfolio Profit (Lines 15+33) $m 36.1 224 -68.3 7.9 98.7 -8.9 -26.7 38.1 141
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Real-Time Ratings

Wind 3,275 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG
1 Potential Wind Output (GWh) 10,294 10,115 9,610 9,728 9,977 9417 9,548 5059 73,749
2 Practical Wind Output (GWh) 10,031 9,936 9474 9,569 9,781 9,280 9,383 4952 72407
3 REZCongestion (GWh) 263 179 136 158 197 137 165 107 1,343
4 Energy Curtailed (% of Prod) 2.6% 1.8% 1.4% 1.6% 2.0% 15% 1.7% 2.1% 1.8%
5 Economic Wind Output (GWh) 10,026 9,812 9,159 9,145 9,457 8,499 8414 4670 69,182
6  Spill-ve spot prices (GWh) 6 124 315 425 324 780 969 282 3,224
7 Energy Spilled (%) 0.1% 1.3% 3.4% 4.6% 34% 9.2% 11.5% 6.0% 47%
8 Total Curtail & Spill (GWh) 269 304 451 583 520 918 1,134 388 4,567
9 Total Curtail & Spill (% of Prod) 2.6% 3.0% 47% 6.0% 5.2% 9.7% 11.9% 7.7% 6.2%
10 Potential ACF (% - ACF) 35.9% 35.3% 33.4% 33.9% 34.8% 32.8% 332% 35.6% 34.4%
11 Economic ACF (% - ACF) 35.0% 34.2% 31.8% 31.9% 33.0% 29.6% 29.2% 32.8% 32.2%
12 ACF Loss (% - ACF) 0.9% 1.1% 1.6% 2.0% 1.8% 3.2% 3.9% 2.7% 2.2%
13 Revenue $m 955.7 9286 4984 10038 16337 10328 9858 6630  7,701.9
14 Costs (incl. REZ) $m 989.9 991.1 993.8 991.1 991.1 991.1 9938 4915 74331
15 Economic Profit $m 342 624 4954 12.8 642.7 4138 79 1716 268.8
16 Unit Revenue ($MWh) 95.3 946 544 109.8 172.8 1215 172 142.0 113
17 Unit Cost ($MWh) 98.7 101.0 108.5 1084 104.8 116.6 118.1 105.2 107.4
18 Economic Profit ($/MWh) 34 6.4 -54.1 14 68.0 49 09 36.7 3.9

Solar PV 1,420 MW 2018 2019 2020 2021 2022 2023 2024 2025 TOT/AVG
19 Potential Solar Output (GWh) 3,522 3,648 3,465 3,385 3,243 3477 3,312 1573 25625
20 Practical Solar Output (GWh) 3455 3,597 3,431 3,345 3,192 3436 3,269 1536 25261
21 REZCongestion (GWh) 67 51 35 40 51 41 43 37 365
22 Energy Curtailed (% of Prod) 1.9% 1.4% 1.0% 1.2% 16% 12% 1.3% 2.4% 1.4%
23 Economic Solar Output (GWh) 3,446 3435 3,055 2,778 2,757 2,208 2,018 1217 20913
24 Spill -ve spot prices (GWh) 9 162 376 568 435 1,228 1,251 319 4,347
25  Energy Spilled (%) 0.3% 4.7% 12.3% 20.4% 15.8% 55.6% 62.0% 262%  208%
26 Total Curtail & Spil (GWh) 75 213 410 608 486 1,269 1,294 356 4,712
27  Total Curtail & Spil (% of Prod) 2.1% 5.8% 11.8% 17.9% 15.0% 36.5% 39.1% 22.6% 18.4%
28 Potential ACF (% - ACF) 27.8% 28.9% 27.5% 26.9% 25.7% 27.6% 26.2% 24.9% 26.9%
29 Economic ACF (% - ACF) 27.7% 27.6% 24.5% 22.3% 22.2% 17.8% 16.2% 19.7% 22.2%
30 ACF Loss (% - ACF) 0.1% 1.3% 3.0% 4.6% 35% 9.9% 10.0% 5.2% 47%
31 Revenue $m 3204 286.0 142.0 202.0 267.0 152.9 130.1 924 15929
32 Costs $m 1724 1726 1731 1726 172.6 1726 1731 856 12945
33 Economic Profit $m 148.0 1134 -31.0 294 944 19.7 -43.0 6.9 298.4
34 Unit Revenue ($MWh) 930 833 465 727 96.9 69.2 64.5 75.9 76.2
35 Unit Cost ($MWh) 50.0 50.2 56.7 62.1 62.6 782 85.8 70.3 61.9
36 Economic Profit ($MWh) 430 33.0 -10.2 106 34.3 8.9 213 56 143
37 Portfolio Output (Line 5+23)  (GWh) 13472 13,247 12,214 11,922 12,214 10,707 10,432 5888 90,096
37 Portfolio Profit (Lines 15+33)  $m 395 26.7 64.2 12.0 102.2 4.0 222 424 18.2
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