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assets and their role is all the more important in the case of market incompleteness. At the same time,

such instruments may induce distortions of competition, thereby limiting the effectiveness of spot mar-

kets. An example of such an effect is the dramatic increase in negative prices observed in many power

markets. Some mechanisms that protect investors from risk decouple operating incentives from spot

prices, leading to inefficient trading. At the same time, those negative prices incentivize investments

in storage. Such distortions have so far been overlooked in most quantitative research focused on mar-

ket incompleteness. Using a bi-level programming approach, this paper proposes a framework within

which to integrate market distortions when analyzing incompleteness. The lower level of the framework

models the power economy via an equilibrium formulation of the two-stage investment problem under

risk aversion, where agents invest in the first stage before operating in the stochastic second stage. A

central planner offers a set of risk-mitigation schemes in the form of Contracts for Difference and price

markups to foster investments, but these schemes can distort competitive bidding. On the upper level,

the central planner tunes the design of contracts optimally so that social welfare is maximized. We pro-
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to electricity producers to enhance welfare and limit the prevalence of negative prices.
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1 Introduction and literature survey

1.1 Context: Risk mitigation and market incompleteness in power markets

The creation of spot markets for electricity trading marked the beginning of the liberalization of the

European power systems era of the nineties. Following the seminal work of Marcel Boiteux (Boiteux

[1960]), the logic of that time was to let markets send the right price signals for investments according to

the fundamental principle that short-term and long-term marginal costs should be equal in a perfectly

competitive market and when production capacities are adapted to demand. At that time, alas, policy-

makers did not anticipate the detrimental role that the many market failures that limit sound functioning

of the markets play. Among these failures, risk aversion and market incompleteness (Staum [2007]) are

now recognized by many economists as serious obstacles to investments because power-producing tech-

nologies are, on the one hand, CAPEX-intensive,1 while many short- and long-term risk drivers, on the

other hand, affect spot markets and, in turn, the revenues of investments: the operations research (OR)

and energy economics literatures are now replete with studies, including Bichuch et al. [2023], Philpott

et al. [2016], and Ehrenmann and Smeers [2011], that quantify the impact of these failures.

Incompleteness in electricity markets stems from the existence of long-term risk drivers, such as reg-

ulatory and technological risks, for which there exist no hedging instruments today. Therefore, it is now

acknowledged that risk-sharing and risk-mitigating instruments are crucial to ensuring the adequacy of

the system by providing financial security to investors and reducing their exposure to spot-market risks

(see, for instance, de Maere d Aertrycke et al. [2017] and Abada et al. [2019]). Crucially, in the context

of the energy transition and the urgent need to reduce greenhouse gas emissions of the power sector

in many countries, such instruments are of paramount importance in fostering investment in renew-

able energy assets, such as farms of solar panels and wind turbines, which must simultaneously bear

both price and production volume risks (Ferris and Philpott [2024], Weiss and Sarro [2013], and Chacon

[2012]). Regulators and policymakers have also acknowledged the issue of market incompleteness, as

is highlighted in a series of white papers published recently by the Council of European Energy Reg-

ulators and the European Agency for the Cooperation of Energy Regulators. These papers discuss the

lack of long-term risk-mitigation instruments in Europe and its impact on investments in presence of

risk aversion.2 This explains, in part, why all recent investments in production have been subsidized

by contracts of some form, such as Contracts for Difference (hereafter CfDs) signed with States for nu-

clear production and Power Purchase Agreements (PPAs) signed with large industrial consumers for

renewable production (see Joskow [2006] for a thorough analysis of the phenomenon).

1.2 Market distortions and the rise of negative spot prices

Negative prices sometimes appear in electricity spot markets. Such prices are not necessarily a result

of malfunctioning markets; they are simply a natural consequence of unit-commitment constraints on

power plants combined with renewable oversupply in hours of low demand. They become problematic,

however, when they occur frequently, as they signal a lack of adaptation of capacity to demand and

1CAPEX stands for Capital Expenditure Cost.
2The reports are available at: https://www.ceer.eu/wp-content/uploads/2024/04/C21-FP-49-03_

Paper-on-LT-investment-signals.pdf and at https://www.acer.europa.eu/sites/default/files/documents/
Publications/Final_Assessment_EU_Wholesale_Electricity_Market_Design.pdf.
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many economists point to risk-mitigating State subsidies, particularly fixed feed-in-tariffs (FITs), as a

source of such inefficiency.3 In recent years the presence or duration of those prices has been increasing

very rapidly. In Germany, for instance, negative electricity prices occurred for 457 hours in 2024, up from

301 hours in 2023. Similar figures have been reported for France (320 hours in 2024), the Netherlands

(458 hours), and Belgium (401 hours)—only countries like Italy that do not allow negative prices to occur

have been spared. And the phenomenon is not restricted to Europe: for example, the Australian NEM

Market reported more than 1300 half-hour periods of negative prices in the first nine months of 2024

alone.

FITs, two-sided CfDs and the practice of floating premia to renewable developers to facilitate rapid

deployment and low capital costs often trigger this phenomenon. Indeed, one of the side effects of these

tactics is that most renewable installations become fully protected from market prices and continue op-

erating even if prices are negative. For example, German research center FfE finds that more than 72.4

GW (or 74.5%) of all photovoltaic PV installations in Germany have no or limited incentives to adjust

their production schedules.4 In response to negative power prices, the European Commission has called

for more robust investments in flexible assets. In this context, the Commission’s Regulation 2024/1747

mandates an assessment of the need for non-fossil flexibility—through Demand Side Management and

batteries—driven by the integration of renewable production, which should ultimately translate into in-

dicative country targets for storage. Paradoxically, specific support or hedging contracts for investments

in batteries do not exist today in Europe, but storage assets have become the main beneficiary of negative

prices (Zhou et al. [2016]).

But what is the relationship between risk-mitigating instruments and negative prices? The answer

lies in market distortions. A risk-mitigation scheme is, in fact, a double-edged sword. Consider, for

instance, a fixed FIT contract secured by a power producer. Such a design protects the producer against

spot-price fluctuations, reducing the investment risk. At the same time, the FIT makes it, in theory, al-

ways profitable to sell to the market, irrespective of the spot-market price, which might constitute an

instance of market distortion. We regard any short-term action taken by an agent that is not in line with

perfectly competitive behavior in response to a price signal as a market distortion: in our case, this in-

cludes, for instance, producing at hours when the spot price is below the production cost or withholding

capacity in the opposite case. The former could be an instance of moral hazard where the producer is no

longer exposed to the market price, whereas the latter might be a consequence of market power abuse.

In the present paper, we abstract away from market power and focus on the first issue, where distortion

is caused by an absence or lack of price exposure. Such a phenomenon might prompt overproduction of

renewables in low-demand hours, ultimately leading to negative prices.

Interestingly, some economists and management scholars have studied the relationship between risk-

mitigating contracts, market distortions, and negative prices. Peura and Bunn [2021] underscore how

hedging strategies deployed by wind-power producers affect short-term electricity prices. In particu-

lar, the paper demonstrates how forward-market hedging strategies could reduce prices for a moderate

3See, for instance, The Economist: Europe faces an unusual problem: ultra-cheap energy, June 20th 2024.
4See: https://www.ffe.de/en/publications/negative-electricity-prices-how-many-renewable-energy-systems-will-run-through/.
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portion of the hedged capacity. Newbery et al. [2018] analyze some market distortions induced by risk-

mitigation schemes associated with renewable production and Meus et al. [2021] develop an equilibrium

market representation to quantify the extent of market distortions of offshore wind-support schemes,

including FITs and capacity-based subsidies. Newbery [2023] and Huntington et al. [2017] propose

remedies such as a market-compatible financial CfD to foster investments while simultaneously lim-

iting distortions, which involves remuneration that depends on an hourly contracted volume. Billimoria

and Simshauser [2023a] do the same with storage assets. Naturally, this stream of research has become

particularly relevant with the recent increase in the number of hours during which negative prices for

electricity appear, as highlighted above. As a result, many European countries are progressively re-

moving or replacing Fixed-Price contracts with spot-indexed instruments with the objective of making

contracted production more reactive to market signals, as implemented in the UK5 and Spain6. To the

best of our knowledge, the existing literature has not identified an optimal contract design that balances

risk-hedging incentives with efficient spot trading in the context of market incompleteness while consid-

ering the entire system’s perspective. Therefore, from the perspective of policymakers, a balance must be

found when elaborating risk-mitigating instruments between i) fostering investments in the context of

risk aversion and market incompleteness and ii) limiting market distortions by producers when trading

in the spot market, thereby also mitigating negative prices.

1.3 The research question

To the best of our knowledge, there is a research gap in the OR and management literature that assesses

the impact of risk-mitigation schemes on market surplus and investments in the context of market in-

completeness from the whole power system’s perspective, inasmuch as market distortions have been

overlooked so far in most of the related models. Indeed, we observe that almost all existing articles

assume that agents react perfectly to price signals once contracts have been secured (as in Ralph and

Smeers [2011], Ehrenmann and Smeers [2011], Philpott et al. [2016] and related articles), with the no-

table exceptions of de Maere d’Aertrycke et al. [2017b], Abada and Ehrenmann [2023], and Bichuch et al.

[2023], who account for the possibility of exercising market power in short-term trading after the invest-

ment and contracting stage. In that respect, by performing a stylized simulation of the French market

with risk-averse agents, Abada and Ehrenmann [2023] show that welfare can be worse off after con-

tracts are introduced when an incumbent leverages market power. The present paper follows suit by

undertaking a similar effort, but here we focus on market distortions caused by a lack of price exposure

instead of market power. We insist on the need to account for these distortions, as they have recently

proved potentially substantial in European power markets, as illustrated above with the current crisis

involving negative prices. Therefore, our research question can be summarized as follows: How can a

set of risk-sharing and risk-mitigating instruments be designed to reap their full benefits for investments,

particularly in renewable production, while limiting market distortions and negative prices?

To answer this question, we construct a methodological framework that captures the following fea-

tures of European spot markets: i) some market drivers (such as demand, plant availability, and fuel

costs) are random; ii) producers are risk-averse when they invest and contract before operating their

5https://www.ofgem.gov.uk/environmental-and-social-schemes/feed-tariffs-fit/scheme-closure.
6https://iea-pvps.org/wp-content/uploads/2021/09/NSR_Spain_2020_b.pdf.
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plants; iii) the financial market is incomplete in the sense that risk cannot be perfectly exchanged between

market participants; iv) producers do not necessarily react to spot prices and might distort competition

depending on how contracts affect their exposure to those prices; and v) the State, anticipating the po-

tential for contracts to induce market distortions, can calibrate the design of the hedging instruments to

arbitrage optimally between risk mitigation and market distortion. Items i) through iv) can be captured

by adapting standard two-stage stochastic equilibrium models of risk-averse agents with incomplete-

ness, as developed in Ehrenmann and Smeers [2011], Philpott et al. [2016], de Maere d Aertrycke et al.

[2017], and similar studies. The present paper follows suit and deploys coherent risk measures (Artzner

et al. [1999]) to model risk aversion with the objective of obtaining convexity properties. Accounting

for item v) constitutes this study’s main methodological novelty: we embed our two-stage equilibrium

model of the power economy into an optimization problem that models the objective of the State, whose

decision variables are features of the contracts it offers to producers on behalf of consumers. This strat-

egy leads naturally to a bi-level problem where the upper level models the behavior of the State and the

lower level represents the power economy. We formulate our model as a Mathematical Programming

problem with Equilibrium Constraints (MPEC), a class of problems known for their non-convexity and

susceptibility to multiple equilibria.

1.4 Contributions and structure of the paper

The present study offers multiple noteworthy contributions to the literature. First, motivated by the

recent surge in negative prices in Europe caused in part by renewable production to which we have

alluded, our paper is, to the best of our knowledge, the first to extend models of power markets in in-

completeness to capture some unintended consequences of risk-hedging contracts in the form of market

distortions. Second, our model is also the first to incorporate an automatic procedure for optimizing the

design of (some of) risk-sharing contracts, namely CfDs and price markups, which are currently debated

by policymakers for green assets, to optimize welfare. In doing so, we had to extend the mathemati-

cal framework of incompleteness to an MPEC formulation where contracts are optimized on the upper

level. In that respect, our model is close in flavor to the recent work of Dimanchev et al. [2024], which

also analyzes the optimization of some instruments—a CO2 tax and some technology-specific tax credits

for renewable investments —to foster investments in renewables via a bi-level approach. This approach,

however, falls short of fully addressing market distortions, as it still leaves producers significantly ex-

posed to the price risk. This is the first difference between theirs and our approach. The second pertains

to the algorithm we develop specifically to solve the bi-level model: Dimanchev et al. [2024] were able to

reformulate the MPEC problem as a Mixed Integer Linear Problem (MILP) using a linear reformulation

because they model risk aversion via Conditional Value at Risk (CVaR), which can, on the one hand, be

reformulated linearly (Rockafellar and Uryasev [2000]), and most importantly, on the other hand, the

instruments they optimize on the upper level induce a linear objective function. Our model, however,

which adjusts parameters of CfDs and markups, involves non-linear terms, making it impossible to re-

formulate our MPEC as an MILP. Therefore, we had to write a specific algorithm to solve our model

within a reasonable timeframe. This algorithm leverages an efficient method for solving the lower level

(i.e. the two-stage stochastic investment problem in equilibrium under market incompleteness) devel-

oped in Abada and Ehrenmann [2023]. The elaboration of this specific algorithm constitutes our third

contribution.
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With its fourth contribution, this study addresses policymakers: by developing a realistic represen-

tation of the French market that incorporates all production technologies as well as storage (keeping in

mind the subtle synergies that exist between renewable production and storage, as underscored in Kaps

et al. [2023]), we can quantify the substantial impact that optimizing contract design should have on wel-

fare with respect to some instruments that are currently implemented. We also find that this optimization

can bring the system relatively close to the complete market benchmark, which is the benchmark of an

efficient, smoothly functioning market where the spot market is perfectly competitive and the finan-

cial market offers sufficient instruments with which to hedge or exchange any risk. Crucially, we also

demonstrate the efficiency of our approach in limiting the occurrence of negative prices by providing

the right incentives for investment in sustainable assets and batteries, as well as efficient operations in

the spot market. More broadly, our research represents an initial step toward identifying optimal instru-

ments for the power system that balance risk-hedging opportunities and efficient market trading in the

transition to low-emission technologies. Our model of the power economy when the financial market is

incomplete is deliberately simple, as our purpose is to propose a proof of concept, demonstrating that

bi-level methods can effectively support policymakers in their effort to enhance welfare while support-

ing the installation of renewables in the context of the energy transition.

The remainder of the paper is structured as follows. Section 2 presents our bi-level model. The lower

level is outlined in Section 2.1 along with a formalization of the contracts and risk-hedging instruments

we consider and Section 2.2 presents the upper-level problem of the optimal contract design. We provide

an existence result in Section 3 as well as a heuristic that facilitates solving the MPEC. In Section 4, we

conduct a thorough numerical application of our models to the French context and demonstrate the

importance of carefully adjusting the set of risk-mitigating contracts offered to producers with respect

to welfare, production, and storage capacity. Finally, Section 5 provides some policy recommendations

and concluding remarks.

2 Risk and optimal contracts in the power economy
In this section we develop our bi-level approach to optimizing contracts. The stochastic investment

problem under risk and incompleteness in the power economy is exposed in Section 2.1, which models

the lower level. In particular, we detail in this section which kinds of contracts are offered to market

participants and how we model the market distortions they might generate. Section 2.2 displays the

problem of the State, which operates on the upper level and strives to maximize system welfare by

adjusting contract design optimally.

2.1 The lower level: a stochastic equilibrium model of the power economy under

market incompleteness

Our starting point is the model of the power economy constructed in Abada and Ehrenmann [2023], to

which we add electricity storage and market distortions. Because such a model is now standard in the

OR literature, we present it only briefly for the sake of completeness. To facilitate reference to the model,

we deliberately retain some of the symbolic notation used by Abada and Ehrenmann [2023].
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2.1.1 Generalities

Consider a power economy with n producers indexed by i ∈ I = {1, 2, ..., n}. Each producer invests

to build capacity before operating and trading in the spot market. Without loss of generality, investors

are differentiated by the production technology they own, but we still consider that the exchanged good

(electricity) is homogeneous. The invested capacity of producer i is Ki (expressed in MW). The invest-

ment decision is undertaken in the first stage and the optimal operations and trading occur in the second

stage. Time is indexed by t ∈ T = {1, 2, ..., τ} and we assume an hourly granularity for ease of exposition.

The time set T allows us to span, for instance, an entire year of production (meaning that we set, in this

case, τ to 8760 hours) or any other characteristic period (a day, a week, a month, etc.). The second stage

comprises stochastic events which we model via a discrete set of scenarios Ω weighted by a probability

measure θ(ω), ω ∈ Ω. Agent i faces a constant marginal investment cost CIi (or CAPEX, expressed

in e/MW/year) and a constant marginal operational cost COt
i (ω) (or OPEX, expressed in e/MWh).

The marginal operational cost is made time- and scenario-dependent as it reflects fluctuating fuel prices

(natural gas, uranium, coal, etc.). Plant i’s normalized availability is denoted by gt
i (ω) ∈ [0, 1], and

we make it stochastic to account for random outages or fluctuating meteorological conditions affecting

wind and solar assets. The production of i’s plant is xt
i (ω) (expressed in MWh) and, when the producer

sells it to the spot market, it receives the spot price pt(ω) (expressed in e/MWh). For ease of exposition

and to ensure that the optimization programs of market agents are convex, we abstract away from unit-

commitment constraints, as we are interested primarily in long-term investment decisions and market

distortions, although we are aware that these constraints constitute some main drivers of negative prices

in Europe. Therefore, we model the linear version of the plants’ production constraints.

We also consider storage (or battery) assets operated by a single storage operator; this feature is

added to the model of Abada and Ehrenmann [2023]. The invested capacity in storage is Ks and the

battery-generated volume traded is xt
s(ω) ∈ R (expressed in MWh): a positive (respectively, negative)

value models a withdrawal (respectively, an injection) of power from (respectively, into) the battery. We

linearize the battery’s operational constraints; in particular, the Energy-to-Power ratio is denoted by γ

(expressed in hours). In other words, the injected/withdrawn volumes are bounded by Ks and the vol-

ume of electricity stored at each moment, which we denote by levt(ω), should never exceed Ksγ. The

marginal investment cost is taken as constant and denoted by CIs (expressed in e/MW/year), and we

overlook operational battery costs, as they are negligible with respect to the capital cost. We neglect

storage losses but this can easily be relaxed in our model.

Consumers are aggregated into a single representative agent. The consumer responds to the price via

the following linear inverse-demand function

pt(ω) = at(ω)− bt(ω)dt(ω), ∀(t, ω) ∈ T × Ω, (1)

with bt(ω) ≥ 0. We assume linearity to ensure numerical tractability. Externalities pertaining to carbon

emissions are modeled via a hard constraint whose dual variable pCO2(ω) represents the CO2 price

(expressed in e/tons). In other words, we assume that the price of CO2 emissions is always calculated
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to meet the exact environmental objectives for the economy under scrutiny within the time horizon of

interest. The total level of tolerated emissions between t = 1 and t = τ is denoted by LCO2 (expressed

in tons of equivalent CO2 per year) and, naturally, we make this bound independent of the scenarios

we use in the second stage. Finally, the CO2 content of technology i is denoted by δi > 0 (expressed in

tons/GWh).

2.1.2 Generalized Contracts for Difference, price markups, and market distortions

We turn now to delineating contracts of the kind on which we focus and describing how they could be

designed by the State when acting on behalf of consumers. Consider a scenario ω ∈ Ω and time t ∈ T

in the second stage. If producer i sells its electricity xt
i (ω) to the market without hedging, it receives the

market price pt(ω) and earns revenue of pt(ω)xt
i (ω). If the producer secures a Fixed-Price CfD (FP-CfD)

at strike price si, it receives the market price pt(ω) from the market and exchanges pt(ω)− si with the

State outside the market (side payments). More precisely, the producer pays to the State the difference

between the spot price and the strike price multiplied by production whenever pt(ω) ≥ si; otherwise,

the producer receives compensation from the State. We assume that the State passes its revenues and

costs entirely on to consumers. Therefore, under a FP-CfD, the producer (respectively, the consumer)

receives (respectively, pays) revenue (respectively, a cost) of:

RFP−C f D = pt(ω)xt
i (ω) +

(
si − pt(ω)

)
xt

i (ω) =
(

pt(ω) + si − pt(ω)
)

xt
i (ω) = sixt

i (ω). (2)

In other words, FP-CfDs completely eliminate the price risk associated with production. These contracts

have been secured by producers in Europe to undertake capital-intensive investments, mainly for nu-

clear technology. For example, the French nuclear operator EDF secured an FP-CfD prior to developing

the Hinkley Point C 3.2 GW nuclear reactor in the UK at a strike price of 92 £/MWh (2012 prices). The

so-called as-produced PPAs for solar and wind production yield a similar effect, as they eliminate the price

risk and leave the producer with only the volume risk to manage. In practice, the strike price is calcu-

lated to reflect the technology’s total production cost following an LCOE calculation (Levelized Cost Of

Electricity; see Obi et al. [2017]).

To limit market distortions, it is necessary to leave the producer exposed to a portion of the spot-

price risk. Therefore, our study analyzes interest in signing Generalized CfDs (G-CfD) that provide the

following revenue to the producer,

RG−C f D = pt(ω)xt
i (ω) + (1 − λi)

(
si − pt(ω)

)
xt

i (ω), (3)

with λi ∈ [0, 1] representing a technology-specific parameter that can be adjusted by the State. Naturally,

FP-CfDs represent a particular instance of G-CfDs whereby λi = 0 and the producer is no longer exposed

to the price risk. In contrast, when λi is set to 1, the contract will expose the producer fully to the price

risk. In other words, the higher is λi, the greater the risk the producer bears. This can easily be observed

by rewriting expression (3) as follows:

RG−C f D =
[
λi pt(ω) + (1 − λi) si

]
xt

i (ω). (4)
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Markups offer another alternative way to subsidize investments. They can take the form of a direct

subsidy of an investment (such as the one treated in Dimanchev et al. [2024]) or a markup on the rev-

enue accrued from the amount of electricity produced. In the latter case, we can model this markup by

modifying the expression of the producer’s revenue (4) as follows,

RG−C f D−Markup =
[
λi pt(ω) + (1 − λi) si + βi

]
xt

i (ω), (5)

where βi ≥ 0 (expressed in e/MWh) is the technology-specific price markup we consider.

Of course, many other risk-mitigating instruments and subsidies exist or have been proposed by

energy economists. For ease of exposition, we restrict our analysis to G-CfDs and price markups, as

shown in equation (5), but our model is general enough to accommodate many other schemes, including

subsidies of capacity, spot-indexed strike prices such as those implemented in some European countries

where a producer which benefits from a CfD does not receive the strike price if the spot market price is

negative (as simulated in our numerical application of Section 4), etc. In particular, because consumers

are aggregated into a single agent, PPAs can be regarded as a particular instance of G-CfDs in our frame-

work. In addition, a technology-dependent reference production profile for the contracts can also be

specified in our model, such as the financial CfD advocated by Newbery [2023]. Needless to say, a tech-

nology i that one does not want to subsidize will be assigned values λi = 1 and βi = 0. Finally, in line

with current European proposals, storage assets are not subsidized in our model, but this limitation can

easily be relaxed.

2.1.3 Risk aversion, risk measures, market incompleteness, and financial contracts

We turn to coherent risk measures to model risk aversion on the part of agents in the economy.7 There

are today two approaches to modeling aversion to risk. The first, widely used in economics, relies on

expected concave utility functions to rank risk preferences. In contrast, the present paper adopts the sec-

ond approach, which is more prevalent in finance and operations research, by employing risk measures.

Several factors motivate this choice. First, utility functions are often challenging to estimate. Second,

risk measures provide a straightforward way to incorporate hedging instruments such as contracts and

options. Third, they can be formulated via optimization theory, often benefiting from favorable con-

vexity properties. Fourth, coherent risk measures, as defined below, recast risk in terms of equivalent

risk-adjusted expectations of loss, easing economic and financial interpretations. Since their introduc-

tion by Artzner et al. [1999], risk measures have become a standard tool for modeling risk aversion.8

In many related studies, coherent risk measures have been used extensively to model aversion to risk

related to energy-market incompleteness; these studies include Ehrenmann and Smeers [2011], Philpott

et al. [2016], Abada et al. [2024], Ferris and Philpott [2022], and Mays and Jenkins [2022] to cite but a few.

In practice, it is well known that many companies and financial institutions, including power-producing

firms, assess risk via the so-called Conditional Value at Risk, also known as Expected Shortfall (Sarykalin

et al. [2008], Sutter et al. [2011], and Filippi et al. [2020]). In fact, as argued in Wang and Zitikis [2021],

7The notions developed in this section are now standard in the OR and finance literature, and the editing is inspired by Abada
and Ehrenmann [2023].

8For a comprehensive discussion of the application of risk measures in stochastic programming, we refer the reader to Shapiro
et al. [2021].
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the Basel Accords now adopt the CVaR as the standard method to assess market risk, making it the most

widely used measure of risk in finance. As we show below, the CVaR risk measure is a particular case of

a coherent risk measure.

When the financial market is complete, sufficiently many risk-hedging instruments are available, but

expecting that availability is unrealistic, as this would require the existence of a set of instruments rich

enough to hedge any stochastic payoff. Therefore, we consider the general and more realistic case of

market incompleteness in which there is no unique way to value risk.9 We then must model varying

individual risk preferences, leading to an equilibrium formulation (Ralph and Smeers [2015], Gaur et al.

[2011]). Faced with a stochastic payoff Z ∈ R|Ω|, a market agent a values its risk ρa(Z) using a coherent

risk measure as follows,

∀Z ∈ Z , ρa(Z) = Maxζ∈Ma

(
−Eζ [Z]

)
, (6)

where Ma ⊂ R|Ω| is its risk set, which is a convex and compact set of probability measures. In other

words, the risk of a stochastic payoff is the worst expected loss, evaluated with a probability measure

that belongs to the risk set. Therefore, a risk-averse agent distorts the weighting of scenarios to assign

greater weight to those with low or negative profits. When problem (6) has a unique solution ζ∗a , we

call it the risk-adjusted probability. With the envelope theorem, we can show that the risk measure is

differentiable almost everywhere on R|Ω| and we can write that

∂ρaZ (Z) = −ζ∗a = −Argmaxζ∈Ma

(
−Eζ [Z]

)
. (7)

In the remainder of this paper, we assume that risk measures are differentiable, possibly after an infinites-

imal perturbation of the data. It is well known that any financial agreement exchanged by agent a can be

incorporated into the expression of its risk set Ma by writing an absence-of-arbitrage condition between

the first and second stages indicating that the risk-adjusted expectation of the payoff on the agreement

should equal its cost. Therefore, we do not model financial instruments explicitly, focusing instead on the

physical risk-mitigation instruments presented in Section 2.1.2. Finally, we define the risk-adjusted profit

of agent a as Eζ∗a [Z], which is also the opposite of its risk ρa(Z).

The most popular example of a coherent risk measures is certainly the Conditional Value at Risk

(CVaR) or the Expected Shortfall, which can be expressed in the form of (6) as (Rockafellar and Uryasev

[2000]):

ρCVaR
a (Z) = Max (−∑ω ζ(ω)Z(ω))

s.t. 0 ≤ ζ(ω) ≤ θ(ω)
1−ξa

∀ω ∈ Ω

∑ω ζ(ω) = 1,

(8)

where ξa ∈ [0, 1] is agent a’s level of risk aversion. As ξa approaches 0, the CVaR assesses risk in a risk-

neutral manner, equivalent to computing the expected loss under distribution θ (which is the natural

distribution of scenarios). Conversely, as ξa approaches 1, the risk measure adopts a robust approach,

considering only the worst-case scenario with the highest loss. We will leverage this risk measure in our

9Indeed, it can be demonstrated that when the financial market is complete, any stochastic payoff can be valued in a unique
manner by a risk-averse agent resorting to a risk measure (Ralph and Smeers [2011]).
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numerical application of Section 4.

2.1.4 Modeling the producers and market distortions

We now turn to modeling the behavior of producers. We proceed by backward induction. Given invested

capacity Ki, in each scenario ω ∈ Ω in the second stage, producer i maximizes its profit by adjusting its

production xt
i (ω),

Zi(ω, Ki) = Max
τ

∑
t=1

[
λi pt(ω) + (1 − λi) si + βi − COt

i (ω)− δi pCO2(ω)
]

xt
i (ω)

s.t xt
i (ω) ≥ 0 ∀t ∈ T

xt
i (ω) ≤ Kigt

i (ω) (µt
i(ω)), ∀t ∈ T.

(9)

where some relevant dual variables are written next to their constraints. Moral hazard in the form

of market distortions is reflected explicitly in the formulation of the objective function, as producers

respond not only to the spot-market price pt(ω) but also to risk-mitigation instruments and subsidies.

This sensitivity is often overlooked in the existing literature, which typically focuses solely on the impact

of these instruments and subsidies on investment decisions, neglecting their influence on short-term

physical trading. Optimization program (9) is convex; it exhibits the following KKT conditions:

0 ≤ xt
i (ω)⊥ µt

i(ω) + COt
i (ω)− βi + δi pCO2(ω)− λi pt(ω)− (1 − λi) si ≥ 0 ∀t ∈ T

0 ≤ µt
i(ω)⊥ Kigt

i (ω)− xt
i (ω) ≥ 0 ∀t ∈ T. (10)

Dual variables µt
i(ω) represent the so-called scarcity rents: they quantify the margins accrued from the

spot market as indicated in the first line of (10). Producer i values its stochastic second-stage payoff

Zi(ω, Ki) via its risk measure ρi that is associated with risk set Mi as specified in (6),

ρi(Ki) = Maxζi∈Mi

(
− ∑

ω∈Ω
ζi(ω)Zi(ω, Ki)

)
, (11)

which provides an expression of the second-stage risk-adjusted profit from the investment −ρi(Ki).

Moving to the first stage, the producer estimates its invested capacity Ki that maximizes its risk-adjusted

profit net of the investment cost, as in

MaxKi≥0

[
− ρi(Ki)− CIiKi

]
. (12)

This optimization problem is of the Max Min Max form. Leveraging the envelope theorem, it can be

shown that it is nevertheless convex (thanks to the use of a coherent risk measure) and that it can be

tackled via its KKT conditions, which we can write as follows (we refer for instance to Abada and Ehren-
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mann [2023] for the full derivation of the following equations):

0 ≤ xt
i (ω)⊥ µt

i(ω) + COt
i (ω)− βi + δi pCO2(ω)− λi pt(ω)− (1 − λi) si ≥ 0 ∀(ω, t) ∈ Ω × T

0 ≤ µt
i(ω)⊥ Kigt

i (ω)− xt
i (ω) ≥ 0 ∀(ω, t) ∈ Ω × T

0 ≤ Ki⊥ CIi − ∑
ω∈Ω

ζ∗i (ω)

(
T

∑
t=1

µt
i(ω)gt

i (ω)

)
≥ 0

ζ∗i = Argmaxζi∈Mi

(
− ∑

ω∈Ω
ζi(ω)

T

∑
t=1

µt
i(ω)gt

i (ω)

)
. (13)

Variables ζ∗i (ω) constitute the risk-adjusted probability of producer i. The third line of (13) conveys

an interesting economic interpretation of our model. It states that the producer invests if only it trusts

that it recoups the investment cost through the risk-adjusted expectation of second-stage scarcity rents

multiplied by the availability of the producer’s plant. Finally, at optimality, we define the industry’s

risk-adjusted profit as producers’ total risk-adjusted profit:

RAP =
n

∑
i=1

[
∑

ω∈Ω
ζ∗i (ω)Zi(ω, Ki)− CIiKi

]
. (14)

2.1.5 Modeling storage

In scenario ω ∈ Ω, the storage operator manages its batteries to maximize profit while respecting its

technical constraints. Here again, we reason by backward induction assuming that storage capacity Ks

has already been set in the first stage and we remind readers that battery operators do not receive any

subsidy from the State and that they do not pay the CO2 price inasmuch as they only transport energy

through time:

Zs(ω, Ks) = Max
τ

∑
t=1

pt(ω)xt
s(ω)

s.t xt
s(ω) ≥ −Ks (νt

s(ω)), ∀t ∈ T

xt
s(ω) ≤ Ks (µt

s(ω)), ∀t ∈ T

levt(ω) = levt−1(ω)− xt
s(ω) (σt

s(ω)), ∀t ∈ {2, ..., τ}

0 ≤ levt(ω) ≤ γKs (υt
s(ω)), ∀t ∈ T

levt=1(ω) = 0. (15)

The first and second constraints limit the volume of power that can be stored and withdrawn from the

battery by the invested capacity. The third constraint models the state equation and the fourth constraint

limits the volume of electricity stored in the battery by the invested capacity multiplied by the number

of hours of storage γ. Furthermore, we control for edge effects by imposing the final condition that the

battery is always empty at t = 1. Here again, the storage operator values its second-stage profit through

the prism of a risk measure ρs associated with risk set Ms,

ρs(Ks) = Maxζs∈Ms

(
− ∑

ω∈Ω
ζs(ω)Zs(ω, Ks)

)
, (16)
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and in the first stage the operator maximizes its risk-adjusted revenue net of the investment cost:

MaxKs≥0

[
− ρs(Ks)− CIsKs

]
. (17)

We can demonstrate that optimization problem (17) is convex and resort to the envelope theorem to

derive the KKT conditions of the storage operator’s investment problem as follows:10

xt
s(ω)⊥ µt

s(ω)− νt
s(ω) + σt

s(ω)− pt(ω) = 0 ∀(ω, t) ∈ Ω × T

0 ≤ levt(ω)⊥ σt
s(ω)− σt+1

s (ω) + υt
s(ω) ≥ 0 ∀(ω, t) ∈ Ω × T − {τ}

0 ≤ µt
s(ω)⊥ Ks − xt

s(ω) ≥ 0 ∀(ω, t) ∈ Ω × T

0 ≤ νt
s(ω)⊥ Ks + xt

s(ω) ≥ 0 ∀(ω, t) ∈ Ω × T

σt
s(ω)⊥ levt(ω)− levt−1(ω) + xt

s(ω) = 0 ∀(ω, t) ∈ Ω × T − {1}

0 ≤ υt
s(ω)⊥ γKs − levt(ω) ≥ 0 ∀(ω, t) ∈ Ω × T

0 ≤ Ks⊥ CIs − ∑
ω∈Ω

ζ∗s (ω)
T

∑
t=1

(
υt

s(ω)γ + µt
s(ω) + νt

s(ω)
)
≥ 0

ζ∗s = Argmaxζs∈Ms

(
− ∑

ω∈Ω
ζs(ω)

T

∑
t=1

pt(ω)xt
s(ω)

)
. (18)

The seventh equation in (18) gives the investment criterion: the storage operator invests only if it trusts

that it recovers the CAPEX cost via its risk-adjusted second-stage margins. Finally, we define the storage

operator’s risk-adjusted profit at optimality as

RAPS = ∑
ω∈Ω

ζ∗s (ω)Zs(ω, Ks)− CIsKs. (19)

2.1.6 Modeling consumers

In scenario ω in the second stage, consumers adjust their consumption dt(ω) to maximize their surplus

as follows:

CS(ω) = Max
τ

∑
t=1

(
at(ω)dt(ω)− bt(ω)

dt(ω)2

2
− pt(ω)dt(ω)

)

−
τ

∑
t=1

(
∑
i∈I

[
(1 − λi)(si − pt(ω)) + βi

]
xt

i (ω)

)
s.t dt(ω) ≥ 0 ∀t ∈ T. (20)

The consumer surplus is composed of two terms: the first is the utility accrued from consumption net of

the cost incurred from buying electricity at the market price. The second term is the side payment the

State exchanges with producers for their G-CfDs and markups, which, we remind the reader, is assumed

to be transferred to consumers. Because this second term is, in fact, independent of the consumers’

decision variable (their consumption), it does not intervene in the formation of the KKT conditions of

10In the remainder of the present paper, when A and B are two sets, we use A − B to denote A ∩ B̄.
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optimization problem (20):

0 ≤ dt(ω)⊥
(

pt(ω)− at(ω) + bt(ω)dt(ω)
)
≥ 0 ∀t ∈ T. (21)

Side payments appear, however, when one calculates risk-adjusted probabilities ζ∗d(ω), which are ob-

tained as follows,

ζ∗d = Argmaxζd∈Md

(
− ∑

ω∈Ω
ζd(ω)CS(ω)

)
, (22)

where Md is consumers’ risk set. They also appear in the expression of the risk-adjusted consumer

surplus, which we define as:

RACS = ∑
ω∈Ω

ζ∗d(ω)CS(ω). (23)

2.1.7 The Nash equilibrium

Given that the financial market is incomplete, we must model the power economy as a partial equilib-

rium model where each agent optimizes its profit given the output of the other agents. We undertake

this task by concatenating the KKT conditions for all market agents—(13) with i ∈ I for producers, (18)

for the storage operator, and (21) for consumers—to which we add i) a spot-market-clearing constraint

whose dual variable models the market price, and ii) a constraint on carbon emissions whose dual vari-

able represents the CO2 price, as written below:

pt(ω)⊥ dt(ω)−
n

∑
i=1

xt
i (ω)− xt

s(ω) = 0 ∀(ω, t) ∈ Ω × T

0 ≤ pCO2(ω)⊥
n

∑
i=1

τ

∑
t=1

δixt
i (ω) ≤ LCO2 ∀ω ∈ Ω. (24)

Several studies have demonstrated that our problem always has a solution provided that the interior

of the intersection of market agents’ risk sets, ∩i∈Mi ∩Ms ∩Md, is not empty. To make our notation

more precise, we concatenate all our primal and dual variables,

xt
i (ω), Ki, xt

s(ω), levt(ω), Ks, dt(ω), µt
i(ω), ζ∗i (ω), µt

s(ω), νt
s(ω), σt

s(ω), υt
s(ω), ζ∗s (ω), ζ∗d(ω), pt(ω), and pCO2(ω),

into a single vector X ∈ R

[
|Ω|(T(2n+8)+n+3)+n+1

]
. We also concatenate variables λi and βi, where i ∈ I,

into a vector (λ,β) ∈ R2n and denote by Sol (λ,β), the solution set for our equilibrium problem of the

power economy (13), (18), (21), and (24). We make the dependence of this solution set with respect to

variables λ,β explicit in the notation. Additionally, we also amend the notation for the risk-adjusted

profits of producers (14), the storage operator (19), and the consumer surplus (23) by making them

depend explicitly on X . For example, the risk-adjusted consumer surplus will henceforth be denoted as

RACS(X).

Proposition 1. If the interior of set
(
∩i∈ Mi ∩Ms ∩Md

)
is not empty, then ∀ (λ,β) ∈ R2n, Sol (λ,β) is

not empty.

Proof. This results from a fixed-point argument. We refer to de Maere d Aertrycke and Smeers [2013],

Theorem 3.14, for a general proof of the proposition.
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2.2 The upper level: optimizing contracts

On the upper level, the State, acting as a benevolent agent, adjusts the design of the contracts λ and

price markups β to maximize the risk-adjusted system’s welfare. We define the latter as the sum of the

risk-adjusted profits of the industry (producers), the storage operator, and the risk-adjusted consumer

surplus:

RASW(X) = RAP(X) + RAPS(X) + RACS(X). (25)

In other words, we assume that the State anticipates the outcome of the power economy resulting from

the set and design of risk-mitigating schemes and the subsidies it offers to market participants investing

in a context of market incompleteness. In doing so, the State also anticipates that producers can be

subject to moral hazard by bidding non-competitively in spot markets, as discussed in Section 2.1.4. The

optimization problem for the State is the following:

Max RASW(X)

s.t X ∈ Sol (λ,β)

0 ≤ λi ≤ 1 ∀i ∈ I

0 ≤ βi ∀i ∈ I

λi = 1 and βi = 0 ∀i ∈ I′. (26)

We denote by I′ ⊂ I the set of technologies that the State does not want to subsidize or promote, either

because they are already profitable or because, like coal-fired power plants, they are not aligned with

energy transition objectives.

Problem (26) is expressed as a Mathematical Programming problem with Equilibrium Constraints, or

MPEC. MPEC problems, which are a particular instances of bi-level problems (Colson et al. [2007]), are

famously difficult to solve because they are non-convex most of the time (see, for instance, the seminal

work of Luo et al. [1996]). In our case, non-convexity stems from two key factors. On the one hand, the

complementarity conditions on the lower level that are embedded in the formulation of set Sol (λ,β)

involve non-convex products of variables. On the other hand, the objective function of the MPEC also

comprises products of variables: for instance, the risk-adjusted producers’ profit includes the products

of such variables as λi pt(ω). We present in the next section a strategy for tackling this issue.

3 Some theoretical results and a heuristic with which to solve the

problem
In this section we demonstrate that our bi-level problem (26) has at least one solution and we propose a

heuristic to find one numerically.

3.1 An existence result

To prove the existence of a solution, we must make an assumption pertaining to the formation of in-

vestors’ risk-neutral probabilities, as follows:
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Assumption H1. Risk measures ρi, i ∈ I and ρs always assign positive values to risk-adjusted probabilities:

∀i ∈ I, ∀Z ∈ R|Ω|, ∀ζ∗ ∈ Argmaxζ∗∈Mi

(
− ∑

ω∈Ω
ζ∗(ω)Z(ω)

)
, ∀ω ∈ Ω, ζ∗(ω) > 0, (27)

∀Z ∈ R|Ω|, ∀ζ∗ ∈ Argmaxζ∗∈Ms

(
− ∑

ω∈Ω
ζ∗(ω)Z(ω)

)
, ∀ω ∈ Ω, ζ∗(ω) > 0. (28)

Economically, Assumption H1 ensures that the producers and storage operator account for all scenar-

ios when they value their investment decisions. This prevents some scarcity rents µt
i(ω), µt

s(ω), νt
s(ω),

and υt
s(ω) from being degenerate. Assumption H1 is, in fact, not new as it has already been invoked in

theoretical articles that analyze investment decisions in an incomplete market (see, for instance, Abada

et al. [2017a]). Practically speaking, the assumption always holds for some specific risk measures such

as entropic or good-deal risk measures (provided that risk aversion is not excessive in this case; see

Cochrane and Saa-Requejo [2000]). Most importantly, the assumption always applies when one values

risk via a coherent risk measure ρ̃ built from a convex combination of the expectation under the natural

probability measure θ and a coherent risk measure ρ of the form

∀Z ∈ R|Ω|, ρ̃(Z) = −ϕEθ(Z) + (1 − ϕ)ρ(Z) (29)

with ϕ ∈ (0, 1). This approach, similar in spirit to the mean-variance portfolio optimization of Markowitz

[2014], has been used by several authors when modeling risk aversion on the part of electricity agents,

as in Downward et al. [2012].

Theorem 1. Under Assumption H1, Problem (26) has at least one solution.

The proof relies on a continuity argument. Schematically, optimization problem (26) can be reformu-

lated as follows,

Max f (X ,λ,β)

s.t (X ,λ,β) ∈ H, (30)

where

f (X ,λ,β) = RASW(X) (31)

and

H =
{
(X ,λ,β) ∈ Rm+2n s.t. X ∈ Sol (λ,β) and (λ,β) ∈ F

}
, (32)

and where, for ease of notation, integer m is defined as the dimension of vector X ,

m = |Ω| (T (2n + 8) + n + 3) + n + 1, (33)

and set F is the feasibility set of the upper-level problem:

F =
{
(λ,β) ∈ R2n s.t. ∀i ∈ I, λi ∈ [0, 1] and βi ≥ 0 and ∀i′ ∈ I′, λi′ = 1 and βi′ = 0

}
. (34)

Function f is continuous because the risk-adjusted profits of producers and the storage operator as
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well as the risk-adjusted consumer surplus involve continuous expressions of the lower-level variable

X . Furthermore, set H is clearly not empty (by Proposition 1). It remains to demonstrate that set H can

be cast into a compact set, which we undertake in Appendix A. Therefore, Problem (30) is designed to

optimize a continuous function on a compact set, which guarantees the existence of a solution.

3.2 Finding a solution

In this section, we propose a heuristic with which to seek a solution to our bi-level problem. In that

respect, numerous numerical methods for solving an MPEC have been proposed in the OR literature for

various applications, including electricity systems. A non-exhaustive list includes Scholtes and Stöhr

[1999], Facchinei et al. [1999], Giallombardo and Ralph [2008], Gabriel and Leuthold [2010], Siddiqui

and Gabriel [2013], and Guo et al. [2015]. Addressing a problem that is similar to ours, Dimanchev et al.

[2024] use an MILP reformulation of the problem by transforming complementarity conditions on the

lower level into linear equations involving integer variables. Such an approach would not work in our

case because the upper-level objective involves products of variables, as explained in Section 2.2. In

that vein, we found that an MINLP (Mixed Integer Non-Linear Problem) reformulation of our problem,

following the philosophy of Dimanchev et al. [2024], did not provide satisfactory results when imple-

mented for large models involving multiple producers, scenarios, and hours. More broadly, we also

tried to solve our model using standard NLP (Non-Linear Problems) commercial solvers such as IPOPT

without success. Furthermore, an iterative relaxation of complementarity constraints x.equation = 0 of

the form |x.equation| =≤ ϵ with decreasing ϵ proved efficient for large values of ϵ but quickly became

intractable when ϵ was reduced.

We believe that these approaches cannot resolve our MPEC problem because of the challenges asso-

ciated with solving the lower-level problem in its complementarity form, even when employing poly-

hedral risk measures such as the Conditional Value at Risk (CVaR) to model risk aversion; CVaR is a

measure that can be expressed in a linearized form (Rockafellar and Uryasev [2000]). This issue has

been reported repeatedly in the literature (Abada and Ehrenmann [2023], Abada et al. [2017b]) and some

heuristics have been proposed to tackle the lower-level problem numerically and also efficiently. This

observation is the starting point of the procedure we propose for solving the MPEC. Given that the lit-

erature provides an efficient means of solving the lower level, we can easily calculate, for a given set

of contracts and subsidy parameters (λ,β), risk-adjusted social welfare. In other words, we have an

efficient heuristic to estimate the objective function of Problem (26). Therefore, it is natural to develop a

gradient-based approach to solve the MPEC, as we now explain.

Algorithm A: solving the lower level. Given upper-level variables (λ,β), we solve the lower level

following the heuristic of Abada and Ehrenmann [2023], which we generalize by adding the storage

operator problem and the CO2 emissions constraint. Given upper-level variables (λ,β), we split the

lower-level problem into two sub-problems and denote by q ∈ N the iteration of the present algorithm.

The first sub-problem focuses on physical trade and investment decisions for given risk-adjusted prob-

abilities ζ
q−1
i (ω), i ∈ I, ζ

q−1
s (ω), and ζ

q−1
d (ω) obtained at iteration q − 1. We denote this sub-problem

as Sub-problem Pq(ζ
q−1
i , ζ

q−1
s ζ

q−1
d ) and express it as a complementarity problem that has the same com-

plexity as a standard two-stage stochastic equilibrium problem of capacity expansion with spot trade. In
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practice, this problem can be tackled efficiently by standard complementarity solvers.

Sub-problem Pq(ζ
q−1
i , ζ

q−1
s ζ

q−1
d ) is:

0 ≤ xt
i (ω)⊥ µt

i(ω) + COt
i (ω)− βi + δi pCO2(ω)− λi pt(ω)− (1 − λi) si ≥ 0 ∀(ω, t) ∈ Ω × T

0 ≤ µt
i(ω)⊥ Kigt

i (ω)− xt
i (ω) ≥ 0 ∀(ω, t) ∈ Ω × T

0 ≤ Ki⊥ CIi − ∑
ω∈Ω

ζ
q−1
i (ω)

(
T

∑
t=1

µt
i(ω)gt

i (ω)

)
≥ 0

xt
s(ω)⊥ µt

s(ω)− νt
s(ω) + σt

s(ω)− pt(ω) = 0 ∀(ω, t) ∈ Ω × T

0 ≤ levt(ω)⊥ σt
s(ω)− σt+1

s (ω) + υt
s(ω) ≥ 0 ∀(ω, t) ∈ Ω × T − {τ}

0 ≤ µt
s(ω)⊥ Ks − xt

s(ω) ≥ 0 ∀(ω, t) ∈ Ω × T

0 ≤ νt
s(ω)⊥ Ks + xt

s(ω) ≥ 0 ∀(ω, t) ∈ Ω × T

σt
s(ω)⊥ levt(ω)− levt−1(ω) + xt

s(ω) = 0 ∀(ω, t) ∈ Ω × T − {1}

0 ≤ υt
s(ω)⊥ γKs − levt(ω) ≥ 0 ∀(ω, t) ∈ Ω × T

0 ≤ Ks⊥ CIs − ∑
ω∈Ω

ζ
q−1
s (ω)

T

∑
t=1

(
υt

s(ω)γ + µt
s(ω) + νt

s(ω)
)
≥ 0

0 ≤ dt(ω)⊥
(

pt(ω)− at(ω) + bt(ω)dt(ω)
)
≥ 0 ∀t ∈ T

pt(ω)⊥ dt(ω)−
n

∑
i=1

xt
i (ω)− xt

s(ω) = 0 ∀(ω, t) ∈ Ω × T

0 ≤ pCO2(ω)⊥
n

∑
i=1

τ

∑
t=1

δixt
i (ω) ≤ LCO2 ∀ω ∈ Ω.

(35)

From Sub-problem Pq(ζ
q−1
i , ζ

q−1
s ζ

q−1
d ), we extract, at equilibrium, the expressions of the stochastic profits

of producers Zq
i (ω), i ∈ I, the storage operator Zq

s (ω), and the consumer surplus CSq(ω) by leveraging

equations (9), (15), and (20), respectively. We also keep track of investment decisions Ki and Ks, which

we concatenate into a vector, Kq ∈ Rn+1. We then use agents’ profits and the surplus to compute

risk-adjusted probabilities ζ
q
i (ω), i ∈ I, ζ

q
s (ω), and ζ

q
d(ω) at iteration q from the financial Sub-problem

Fq(Zq
i , Zq

s , CSq), as follows:

Sub-problem Fq(Zq
i , Zq

s , CSq) is:

ζ
q
i = Argmaxζi∈Mi

(
− ∑

ω∈Ω
ζi(ω)Zq

i (ω)

)

ζ
q
s = Argmaxζs∈Ms

(
− ∑

ω∈Ω
ζs(ω)Zq

s (ω)

)

ζ
q
d = Argmaxζs∈Md

(
− ∑

ω∈Ω
ζs(ω)CSq(ω)

)
. (36)

Financial Problem Fq(Zq
i , Zq

s , CSq) is summable and is equivalent to

Max
ζ

q
i ∈ Mi, i ∈ I

ζ
q
s ∈ Ms

ζ
q
d ∈ Md

[
− ∑

ω∈Ω

(
∑
i∈I

ζ
q
i (ω)Zq

i (ω) + ζ
q
s (ω)Zq

s (ω) + ζ
q
d(ω)CSq(ω),

)]
, (37)
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implying that it can be solved efficiently. We now have collected all the building blocks we need to

express Algorithm A:

• Initialization. We initialize the risk-adjusted probabilities as follows:

ζ0
i (ω) = θ(ω) ∀(i, ω) ∈ I × Ω

ζ0
s (ω) = θ(ω) ∀ω ∈ Ω

ζ0
d(ω) = θ(ω) ∀ω ∈ Ω. (38)

• Iteration. At iteration q ≥ 1, we solve physical Sub-problem Pq(ζ
q−1
i , ζ

q−1
s ζ

q−1
d ) and compute Zq

i ,

i ∈ I, Zq
s , and CSq. We then solve financial Sub-problem Fq(Zq

i , Zq
s , CSq) to obtain solution ζ∗i , ζ∗s ,

and ζ∗d at optimality. At iteration q, ζ
q
i , ζ

q
s , and ζ

q
d are computed as

ζ
q
i (ω) = (1 − ι)ζ

q−1
i (ω) + ιζ∗i (ω) ∀(i, ω) ∈ I × Ω

ζ
q
s (ω) = (1 − ι)ζ

q−1
s (ω) + ιζ∗s (ω) ∀ω ∈ Ω,

ζ
q
d(ω) = (1 − ι)ζ

q−1
d (ω) + ιζ∗d(ω) ∀ω ∈ Ω, (39)

with ι ∈ (0, 1] being the memory rate.

• Stopping criterion. Carry on the iteration phase until convergence,

∥Kq − Kq−1∥ ≤ toleranceA, (40)

where toleranceA > 0 is the convergence tolerance level and ∥.∥ is a norm defined over the space

Rn+1.

By design, when it converges, Algorithm A always finds an element of Sol (λ,β), i.e., an equilibrium

solution to the lower-level problem given the State’s policy (λ,β). Practically speaking, we found that

the algorithm finds a solution systematically, even though we are aware that it might miss others, as

shown in Gérard et al. [2018]. We also observed that convergence is facilitated by the introduction of

some memory, modeled by parameter ι, during the iteration process. Needless to say, after convergence

we can calculate system welfare and other indicators at the reached solution straightforwardly.

Algorithm B: solving the upper level (MPEC). We now outline our heuristic for solving Problem (26),

following a gradient-ascent procedure. Gradient-based methods have recently garnered heightened in-

terest with the advent of machine learning, as they are used routinely to calibrate weights of neural

networks. They are, however, hardly general enough to accommodate large classes of problems, as they

should be tailored to the numerical characteristics of a given problem to be solved, as shown by the vari-

ety of methods proposed for adjusting the algorithm’s learning rate optimally (see, for instance, Baydin

et al. [2017], Smith [2017], Nacson et al. [2019], Zhang [2019], and Smith and Topin [2019] for some re-

cent articles on the topic; we also refer the reader to Ruder [2016] for a review). The gradient method is

iterative: (λq,βq) is the upper-level variable at iteration q ∈ N.
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• Initialization. We initialize the upper-level decision variables as follows (no subsidies):

β0
i (ω) = 0 ∀i ∈ I

λ0
i (ω) = 1 ∀i ∈ I. (41)

• Iteration. At iteration q ≥ 1, we estimate the gradient of the State’s objective function by perturbing

point
(
λq−1,βq−1) along all dimensions corresponding to the power plants one wants to subsidize

I − I′ and by estimating risk-adjusted welfare via Algorithm A. More precisely, we approximate

the gradient of risk-adjusted system welfare at
(
λq−1,βq−1) as follows:

1. For any i ∈ I − I′, use Algorithm A to calculate risk-adjusted welfare at some perturbed points

(in what follows, by abuse of notation, we make explicit the dependence of RASW with respect

to upper-level decision variables),

RASWλi ,− = RASW
(

λ
q−1
1 , λ

q−1
2 , ..., λ

q−1
i − ϵ, ..., λ

q−1
n ,βq−1

)
∀i ∈ I − I′

RASWλi ,+ = RASW
(

λ
q−1
1 , λ

q−1
2 , ..., λ

q−1
i + ϵ, ..., λ

q−1
n ,βq

)
∀i ∈ I − I′

RASWβi ,− = RASW
(
λq−1, β

q−1
1 , β

q−1
2 , ..., β

q−1
i − ϵ, ..., β

q−1
n

)
∀i ∈ I − I′

RASWβi ,+ = RASW
(
λq−1, β

q−1
1 , β

q−1
2 , ..., β

q−1
i + ϵ, ..., β

q−1
n

)
∀i ∈ I − I′, (42)

where ϵ > 0 is an arbitrary small parameter.

2. We approximate the gradient of RASW at point
(
λq−1,βq−1) numerically as follows:

∂RASW
∂λi

(
λq−1,βq−1

)
≈

RASWλi ,+ − RASWλi ,−
2ϵ

∀i ∈ I − I′

∂RASW
∂βi

(
λq−1,βq−1

)
≈

RASWβi ,+ − RASWβi ,−
2ϵ

∀i ∈ I − I′,

∂RASW
∂λi

(
λq−1,βq−1

)
= 0 ∀i ∈ I′

∂RASW
∂βi

(
λq−1,βq−1

)
= 0 ∀i ∈ I′. (43)

We keep track of our approximation of the gradient of RASW in vector ∇RASWq ∈ R2n. We

then update point
(
λq−1,βq−1) as follows: we first define the new target points according to the

gradient-ascent philosophy

λ∗
i = λ

q−1
i + αq ∂RASW

∂λi

(
λq−1,βq−1

)
∀i ∈ I − I′

β∗
i = β

q−1
i + αq ∂RASW

∂βi

(
λq−1,βq−1

)
∀i ∈ I − I′

λ∗
i = 1 ∀i ∈ I′

β∗
i = 0 ∀i ∈ I′, (44)

where αq > 0 is an iteration-dependent learning rate. Second, we define the new variable (λq,βq)

as the projection PF of (λ∗,β∗) onto the upper level’s feasibility set F defined in (34) (a set that is

convex and that can be cast into a compact set):
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(λq,βq) = PF (λ∗,β∗) . (45)

For our problem, a high learning rate can speed up convergence but risks overshooting the optimal

solution. Conversely, a low learning rate may become trapped in a local optimum. To address

this challenge, we propose the following heuristic approach for adjusting the learning rate in our

problem: we increase the learning rate if, indeed, the gradient step led to an increase in welfare

between iterations q − 1 and q; otherwise we reduce it to ensure that we do not overshoot the

optimal solution.

αq+1 = ψ αq if RASW (λq,βq) > RASW
(
λq−1,βq−1)

αq+1 = ψ′ αq otherwise ∀q ≥ 1, (46)

where 0 < ψ′ < 1 < ψ.

• Stopping criterion. Carry on the iteration phase until convergence,

∥∇RASWq∥ ≤ toleranceB, (47)

where toleranceB > 0 is the convergence tolerance level and ∥.∥ is a norm defined over the space

R2n.

4 A numerical application

4.1 The French economic context in brief

In this section we demonstrate the efficiency and estimate the welfare gains derived from optimizing the

risk-mitigating instruments. To do so, we focus on the French power economy, chosen for two key rea-

sons. First, France has developed high-capacity nuclear production of 62 GW covering approximately

70% of demand. Most French nuclear reactors were built, however, before the 1980s, meaning they

are approaching their expected lifetimes. Combined with lofty ambitions for electrification of demand,

aimed at achieving France’s emissions targets, this conjuncture necessitates substantial investments in

new capacity in the coming years. The French State has repeatedly expressed its commitment to nu-

clear technology—as is reflected in all official scenarios forecasting the evolution of the country’s power

mix (see RTE [2022])—and the will to develop adequate risk-sharing schemes to do so. Second, France

harbors significant potential for wind and photo-voltaic (PV hereafter) electricity production thanks to

favorable solar irradiation in the south and a relatively long coastline in the west and north. Coupled

with declining capital costs for these technologies, this context makes investments in renewable produc-

tion economically viable and, indeed, we observe that all official forecasts for French power capacity

include investments in wind and PV. (Henceforth we refer to Wind and PV technologies as Renewable

Energy Sources, or RES.) Therefore, French authorities and energy economists emphasize the need to

strongly and jointly foster investments in nuclear and renewable production associated with flexibility

in the form of batteries via risk-sharing schemes involving consumers.

The variety of means for achieving this goal include designing adequate risk-mitigating contracts
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such as CfDs and PPAs, which are being vividly debated in the country (see Percebois [2023] for a sum-

mary). These debates address not only the nature of the instruments themselves but also their character-

istics (duration, strikes, etc.). Of course, these debates have increased in intensity with the recent crisis

inherent to the strong increase in the occurrence of negative prices in Europe. In this context, although

we are aware that decisions pertaining to investments in nuclear and renewable technologies can be po-

litical, reflecting concerns over the security of supply, we still believe that an economic analysis of the

proper design of risk-mitigating schemes to foster investments with the objective of optimizing welfare

may constitute a valuable contribution to the ongoing debate. To do so, we propose building a simple

representation of the French power economy inspired by our model in Section 2, as we explain in the next

section. Because MPEC problems can rapidly become computationally intractable, we had to keep the

size of our models reasonable. In particular, we achieved this by assuming that power plants of the same

technology are symmetric and by limiting the dynamics of the second stage to a single representative

day.

4.2 Data collection, additional assumptions, and benchmarks

In this section we outline our procedure for building the dataset with which we ran our model in Section

2.

4.2.1 Data calibrated using public sources

We account for the main production technologies in France: PV, wind, nuclear, gas-fired (typically

combined-cycle gas turbines, CCGT, which are used during mid-load hours, or gas turbines, GT, used

for peak production), coal-fired power plants, fuel-fired power plants, as well as hydropower produc-

tion. All plants of the same technology are assumed to be symmetric in terms of cost and efficiency,

which is a reasonable assumption for long-term investment models. Moreover, a plant’s production

profile is assumed to remain unchanged throughout the lifetime of the asset. We also account for large-

scale energy storage batteries (the most important of which rely on lithium-ion technology) having an

Energy-to-Power ratio of 4 hours. We calibrate our model using public data for the year 2019. We chose

that year as it was the last year when power markets followed a standard regime in Europe.11 Hence, this

choice allows us to derive general enough results and recommendations. Fuel costs are taken from the

French energy transparency platform ODRÉ.12 Hourly demand for electricity and power plants avail-

ability is extracted from publications of the French Transmission System Operator RTE.13 Hourly day-

ahead power prices are taken from the EPEX spot database. Investment costs and CO2 content factors

are taken from the ADEME database.14 CAPEX costs are translated into annuities using a discount rate

of 5% for all technologies and expected lifetimes extracted from Statista [2024]. The CO2 constraint level

is derived from production data for the year 2019. We focus our modeling of time on one representative

day obtained with a clustering technique for market data comprising demand, fuel costs, and available

capacity. We abstract away from congestion costs, as they are, on the one hand, negligible in France, and,

11Indeed, starting in 2020, European power markets entered a crisis regime in response to the COVID pandemic that drasti-
cally decreased demand and prices to abnormal levels, followed by the Russo-Ukrainian war that led to natural gas disruptions
causing a regime of extremely high prices, before entering a regime of extremely low and often negative prices, as argued in the
introduction.

12See https://opendata.reseaux-energies.fr/.
13RTE [2022].
14Agence de la transition écologique, see https://www.ademe.fr/.
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on the other hand, producers are subject to zonal pricing.15 We use a bootstrapping technique with the

market data to generate 20 equally weighted scenarios depicting consumption, prices, plant availability,

and fuel costs. We deliberately choose only one representative day to model plants’ operations to allow

numerical tractability, given the fundamental property in virtue of which MPEC problems are extremely

challenging to solve and are subject to the curse of dimensionality. This shortcoming is, however, com-

pensated by the variety of the scenarios we consider. The linear inverse demand function parameters are

calculated from reference consumption and prices, assuming an elasticity of consumption with respect

to the price of -0.01 (see Zhu et al. [2018]).16 These reference prices are only used to construct the inverse

demand functions and we remind readers that spot prices are endogenous to our models.

Given that hydroelectric production is geographically constrained, we cap its capacity at the installed

level of 27.7 GW. Additionally, we deliberately limit the capacity of nuclear technology to 30 GW, a value

that lies in the mid-range of capacities forecast in official scenarios for the evolution of the French power

energy mix between the present day and 2050.17 This choice is driven by several factors: (i) our aim

to provide long-term policy recommendations for optimal subsidies for the energy transition and (ii)

our interest in examining synergies between renewable subsidies, investment in flexibility, welfare, and

negative market prices. Coupled with our CO2 constraint, this choice increases the need for renewable

technologies with flexibility, necessitating a thorough evaluation of optimal contracts and subsidies.

Regarding CfDs, the French (and European) policy is to subsidize nuclear, wind, and PV production

because these energy sources align with the objectives of the transition to low-emission electricity pro-

duction. Therefore, these are the technologies that benefit from contracts and markups in our model.

We calibrate the strike price for nuclear technology to reflect that of the Hinkley Point C reactor that the

French producer EDF secured in 2016: 110 e/MWh.18 The strike prices for PV and wind production

are calibrated on average PPA prices in 2019: 104 e/MWh for PV19 and 95 e/MWh for wind.20 Fi-

nally, as argued above, in alignment with France and other European countries’ subsidy schemes for the

energy transition, storage assets do not receive centralized support today. This approach likely reflects

the European Commission’s belief that supporting wind and solar PV production is sufficient to foster

investments in flexibility, thereby reducing the transaction costs associated with contracting and subsi-

dizing. This choice is, however, a matter of debate among energy economists (Billimoria and Simshauser

[2023b] and Winzer et al. [2024]).

We conduct our analysis under the assumption that capacity is built from scratch, with the objec-

15See the French Transmission System’s Operator’s publication, available at https://www.rte-france.com/
analyses-tendances-et-prospectives/le-schema-decennal-de-developpement-du-reseau.

16If pt
re f (ω) denotes the reference price and qt

re f (ω) the reference consumption at time t and scenario ω, and if elas ≤ 0 denotes
the elasticity of consumption with respect to the price, we compute the inverse demand function parameters as:

at(ω) = pt
re f (ω)

(
1 − 1

elas

)
, bt(ω) = −

pt
re f (ω)

elas qt
re f (ω)

.

17See RTE’s publications at https://rte-futursenergetiques2050.com/scenarios/m1/v2.
18See official communication at https://www.gov.uk/government/collections/hinkley-point-c.
19See https://www.pv-magazine.fr/2023/02/10/les-prix-des-ppa-solaires-europeens-ont-augmente-de-114-au-t4-2022/.
20See https://windeurope.org/wp-content/uploads/files/about-wind/campaigns/2020-successes/levelten/

products/LevelTen-Energy-European-Q42020-PPA-Price-Index.pdf.
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tive of providing a long-term perspective of the power system under various risk-mitigating schemes.

Therefore, our models are not intended to replicate the current mix of the French power system.

4.2.2 Assumptions pertaining to risk aversion

Experimental and behavioral economics offer a range of methods with which to elicit individuals’ risk

preferences (we refer to Charness et al. [2013] for a general review). Unfortunately, to the best of our

knowledge, this task has not been carried out with power producers facing both short-term and long-

term risk. Therefore, we must rely on standard assumptions in the literature to estimate producers’

attitudes when facing risk. As is now standard in the OR literature when it is applied to energy, we

model market agents’ risk aversion with the CVaR, which is a coherent measure of risk as explained

in Section 2.1.3 (for applications of the CVaR, see Downward et al. [2016], de Maere d Aertrycke et al.

[2017], Ferris and Philpott [2022], Mays and Jenkins [2022], and Dimanchev et al. [2024] to cite only a

few). This choice is motivated by the fact that, as argued in Section 2.1.3, companies often rely on this

risk measure to assess risk, as it has become the standard approach to do so in finance. More precisely,

as in Downward et al. [2012], we assume that agents strive to maximize a mean-risk formulation of their

stochastic profit of the form presented in equation (29) with parameter ϕ taken at 0.4. This choice has the

advantage of ensuring that Assumption H1 always holds and therefore, that the MPEC has a solution

according to Theorem 1. Levels of risk aversion under the CVaR are the same for all agents (reflecting the

point that, notwithstanding differences in hedging strategies, they all have the same exposure to market

risk), but this does not necessarily imply they face the same risk exposure. Here again there exist some

elicitation methods for levels of risk aversion for the CVaR (see, for instance, Fissler and Ziegel [2021]),

but we are not aware of any application in the context of investment decisions related to electricity.

Therefore, we set the level of risk aversion to 0.75, a value that is standard in the OR literature. This

means that, when valuing an investment, agents focus on scenarios where the profits fall below the 25%

quantile of the profit distribution. We verified that our results remain qualitatively the same with other

(close) values of the level of risk aversion.

4.2.3 Hyper-parameters

We use the following values for Algorithm A’s hyper-parameters. The memory rate ι is set to 0.2. Con-

vergence is measured with toleranceA equal to 5.10−2 for the L1 norm. Algorithm B’s hyper-parameters

are the following. The initial learning rate is 0.02, ψ′ = 0.5, and ψ = 1.1. Convergence is measured

with the L1 norm and with a tolerance of 10−4. Finally, parameter ϵ, which we use to approximate the

gradient of the upper level’s objective function, is taken at 10−2.

4.3 Economic benchmarks

We analyze five benchmarks for the French power economy.

1. The complete market. When the financial market is complete, risk can be swiftly exchanged be-

tween participants. In other words, the set of financial securities spans the entire space of random

variables, meaning that any stochastic profit can be replicated by a portfolio of financial contracts

(Cochrane [2009]). It is well known that, when the market is complete, risk-adjusted welfare is

maximal and there is no need to further subsidize investments, as agents can trade risk perfectly
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in the market (Ralph and Smeers [2015]). In this case, the lower level can be solved by optimizing

risk-adjusted social welfare instead of its equilibrium formulation.

2. The fully incomplete market. When the financial market is fully incomplete, there are no risk-

sharing instruments in the economy. Agents cannot trade risk and the set of financial contracts that

could be exchanged is empty. There are also no subsidies or CfDs: ∀i ∈ I, λi = 1 and βi = 0.

3. Current regulation. For this benchmark, we model the economy in its current logic in the country:

producers receive a CfD that guarantees a fixed price irrespective of the spot-market price. This

removes the price risk for nuclear, PV, and wind production and naturally induces incentives for

market distortions. Using our notation, this means that λnuclear = λPV = λwind = 0, ∀i ∈ I′, λi = 1,

and ∀i ∈ I, βi = 0.

4. Current regulation+. For this benchmark, we model how some European countries have modified

the functioning of CfDs by making contract payments conditional on a non-negative market price.

More precisely, we assume for this benchmark that the producer receives the strike price only if it is

non-negative; otherwise, it receives the spot price. This adaptation of the CfD has the advantage of

limiting the incentives for market distortions and aligning renewable production with the system’s

market needs in case of oversupply.

5. Optimal regulation. For this benchmark, the State optimizes its G-CfDs and markups to maximize

social welfare, as presented in Section 2. We remind readers that these contracts and subsidies are

provided to nuclear, wind, and solar production and no subvention is offered to storage assets.

We note that the first two benchmarks are unrealistic as a complete market for risk is only a theoretical

chimera and there exists today a small number of contracts that could be exchanged in the economy. The

main interest of these cases is that they serve as theoretical benchmarks for an optimal system for the

complete market case, and for an inefficient power economy for the fully incomplete case.

4.4 Results for welfare

Figure 1 shows risk-adjusted social welfare expressed in Billions e/year (B e/year hereafter). Naturally,

risk-adjusted social welfare is highest when the financial market is complete. This result is reassuring

and coincides with what one finds in the literature. In particular, it implies that, no matter how the State

adjusts its subsidies and risk-hedging instruments, it can never reach the case where agents can fully

trade risk between themselves. Of course, as mentioned before, this benchmark is, in fact, a utopia as

it assumes that any random payoff can be replicated by a set of contracts (or, in other words, that any

risk can be hedged), which requires the elaboration of more hedging instruments than the number of

scenarios, which is an impossible task. Therefore, the complete market benchmark will serve as a proxy

for an efficient economy: the closer the system is to aligning with this benchmark, the more efficient it is.

Interestingly, Current regulation makes the system worse than when the market is fully incomplete. This

example illustrates perfectly how inadequate risk-mitigating schemes might make the power system ac-

tually worse off than leaving market agents to manage market risk independently with no intervention.

This outcome mainly reflects market distortions. Indeed, as we show when analyzing invested capac-

ity, Current regulation leads to massive over-investments in wind and PV, favoring market distortions:

at this benchmark, RES receive the strike price irrespective of the realization of the spot-market price,

prompting them to produce even during hours of oversupply and low demand. This, in turn, likely
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increases the number of occurrences of negative prices, as we will see. If we consider the fully incom-

plete benchmark as a reference case, we estimate that Current regulation reduces social welfare by 21 B

e/year. The complete market, on the other hand, increases welfare by 48 B e/year.

Moving on, we observe that Current regulation + does much better: it also enhances system wel-

fare when compared with the incomplete case by 7 B e/year with the natural consequence that market

distortions are mitigated because renewable producers are left with some price risk to manage and over-

investments in PV and wind capacity are reduced, as we show below. We also find that, when contracts

are optimized by the State (the Optimal regulation benchmark), system welfare is much higher than at

the incomplete benchmark: +22 B e/year. This is higher than for Current regulation +, which suggests

that making the CfD’s payment naught when the market price is negative is already a good means of

amending Current regulation with the objective of limiting market distortions, but the State has addi-

tional leverage with which it can increase the benefits of contracts even further via generalized CfDs and

price markups such as those we study, if optimized properly.

Figure 1: Risk-adjusted social welfare.

4.5 Results for investments

Figure 2 depicts invested capacity. The most interesting result is probably the invested capacity in wind

and PV. When the market is fully incomplete, investment in these technologies is substantially lower

than for all other benchmarks because RES are the only technologies for which investors must hedge

the price and volume risks simultaneously. Therefore, when risk cannot be swiftly traded, some form of

subsidy is necessary to increase their capacity in the system. Interestingly, Current regulation leads to

massive over-investments in these technologies because of market distortions. When conditioning the

CfD’s revenue on the non-negativity of the market price (Current regulation +), we still observe some

over-investments, a result that is driven in part by the strike prices we consider. Market distortions are,

however, limited, as we highlight in the following section, where it is observed that RES increase their

26



curtailment substantially, leading to very few occurrences of negative prices. When CfDs and markups

are optimized (Optimal regulation), investments in PV capacity are very close to that of the complete

market case (+6 %) but remain high for wind production (+ 22%). When compared with welfare out-

comes, these results are encouraging: with a limited number of contracts—specifically, a Generalized

CfD with a price markup for three technologies—the State has some levers it can use to optimize their

design to bring the system relatively close to the complete market benchmark. Naturally, CCGTs and

GTs adapt to the investment in renewables to provide peak capacity to the system.

Figure 2: Invested capacity.

4.6 Results for system flexibility, the occurrence of negative prices, and the CO2

price

Figure 3 presents our results for system flexibility, which we measure through the invested capacity in

storage (Ks) and the volumes of wind and PV energy that RES producers voluntarily curtail in response

to price signals. Investment in storage is, overall, riskier than investment in thermal power plants be-

cause a battery captures price arbitrage in time, causing its profit generally to fluctuate.21 This explains

why invested capacity in storage is very low when the market is fully incomplete. This result is partic-

ularly relevant as it questions European policymakers’ decision not to subsidize flexibility, and confirms

some results reported in the extant literature (Billimoria and Simshauser [2023b]). Under Current regula-

tion, RES producers do not have a strong enough incentive to curtail, increasing the need for batteries. Of

course, the curtailment of RES is the highest under Current regulation +, as producers lose profit if they

sell at hours with negative prices and the installed RES capacity is high. Therefore, the need for batteries

is drastically reduced at this benchmark. These results highlight how the design of support schemes for

RES technologies can substantially affect the business model for battery operators. Interestingly, when

21In practice, the claim is true because prices show some correlation in time.
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CfDs and markups are optimized, a balance between storage and RES curtailment is restored, much like

what we observe at the complete market benchmark, but with a lower amplitude. This result holds be-

cause, with G-CfDs and markups, RES producers are still at least partially exposed to price risk, retaining

an incentive to curtail when prices are substantially negative. However, because their G-CfD with price

markup remuneration is of the form

RG−C f D−Markup =
[
λi pt(ω) + (1 − λi) si + βi

]
xt

i (ω), (48)

they could be incentivized to produce during some hours with negative prices, depending on the strike

prices and optimal variables on the upper level λi and βi with i ∈ {Wind, PV}—we analyze these values

in the next section. In other words, we note that optimizing CfDs and price markups as we propose in

the present paper mitigates market distortions but does not eliminate them entirely because we still need

to protect RES producers from the price risk to some extent to encourage sufficient investments.

Figure 3: Invested capacity in storage and voluntary curtailment of RES.

The previous results are reflected in the occurrence of negative prices, as illustrated in Figure 4. The

figure shows the amplitude of negative prices, which we define as the average market price conditional

on the price being non-positive:

Amplitude of negative prices =
1
T

T

∑
t=1

Eθ

(
pt | {pt ≤ 0}

)
. (49)

We observe that, when the market is complete, the amplitude of negative prices is very low and is

nonexistent at the Current regulation + benchmark. When the market is fully incomplete, negative prices

persist despite RES curtailment because of a lack of storage capacity. Indeed, as we have remarked, as

the business model for storage is highly risky, an incomplete market for risk will not foster the needed

battery capacity. Under Current regulation, the amplitude of negative prices is the highest, illustrating
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even further the detrimental impact of market distortions when price risk is completely removed: RES

capacity indeed rises but at the expense of market efficiency. Under optimal CfDs and markups, negative

prices are strongly limited but they are not entirely eliminated because, as we argue above, G-CfDs with

markups do not eliminate market distortions entirely as the strike price still influences remuneration to

producers. In particular, based on equation (48), we can calculate that, for technology i ∈ {Wind, PV},

curtailment occurs only when the spot price drops below a threshold p0, the expression of which is

(assuming λi ̸= 0)

p0 = − (1 − λi)si + βi
λi

. (50)

Therefore, because p0 < 0, we conclude that negative prices cannot be entirely eliminated. This is per-

haps the cost the system must pay to incentivize sufficient investments in RES given the set of contracts

we consider in this study and the fundamental non-completeness of spot electricity markets. We note,

however, that the amplitude of negative prices is substantially lower with our proposal than when the

market is incomplete or under Current regulation. We emphasize that these positive outcomes for the

extent of negative prices are not achieved by design, but rather emerge as an unintended, yet positive,

consequence of maximizing welfare on the upper level.

Figure 4: The amplitude of negative prices.

We conclude our analysis with an assessment of the CO2 price. Figure 5 shows this price expressed as

percentage differences with respect to the Complete market case. We first remark that, when the market

is fully incomplete, the CO2 price is much higher than at the other benchmarks. This is the direct conse-

quence of the difficulty of triggering the necessary investments in RES and battery technologies because

of high risk, as discussed above. Interestingly, with some CfDs, the CO2 price is lower, as renewables are

incentivized in the system at levels higher than in the complete market case. We also observe that the

highest incentive (Current regulation) leads to the lowest CO2 price. With a more parsimonious subsidy
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(Current regulation+) the price is a bit lower and even more so when CfDs and markups are optimized

(Optimal regulation). Here again, these results follow the optimization of welfare.

Figure 5: CO2 prices expressed as % where the complete benchmark serves as a reference, i.e. 0%.

4.7 Optimal contracts and markups

We now present the optimal values of the Generalized CfDs and price markups obtained after solving

the MPEC for the Optimal regulation benchmark. Table 1 summarizes the results. A few observations

λ β (e/MWh)
Nuclear 1 0

Wind 0.25 0.2
PV 0.67 0.4

Table 1: Optimal contracts and markups.

stand out. First, we observe that nuclear capacity does not need to be subsidized at all in France and

can be left exposed to market risk. This finding is driven by the fact that we limit invested capacity to 30

GW, a value that is lower than current available capacity (61 GW). In a sensitivity analysis, we verify that

when we no longer limit nuclear capacity, optimal contracts take up to 20% of the price risk in this case

(meaning that λnuclear = 0.8), and we would end up with an invested capacity of 46 GW. Second, optimal

contracts provide greater price-risk hedging against wind production than against PV: λwind < λPV . Our

interpretation is that PV is, in fact, more likely to distort competition because it produces at hours when

negative prices might occur, whereas wind production is spread more evenly over the course of a day.

This phenomenon, underlying the so-called cannibalization effect of RES production (Prol et al. [2020]),

can hence be mitigated by exposing solar production to the price risk to a greater extent than wind. This,

in turn, encourages more voluntary curtailment of PV.
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4.8 A sensitivity analysis

Our results highlight the harmful impact of inadequate subsidy schemes on welfare, investments, and

negative prices. This impact in France is however mitigated by the presence of nuclear production.

Therefore, we expect this adverse effect to be more pronounced in power systems that rely heavily

on renewable energy with little capacity from alternative baseload technologies such as nuclear or hy-

dropower plants. Examples of such systems in Europe include those in Germany, the Netherlands, and

Portugal where, indeed, the surge in negative prices has been particularly significant in recent years.

To verify this claim, we perform a simple sensitivity analysis of our base case, where we leave all data

unchanged except for the capital and operational costs of power plants and storage assets, which we up-

date to use 2025 figures. We do so because the costs of renewables and utility-scale battery storage have

dropped in the last five years (by more than 15% for wind, 5% for PV, and more than 34% for batteries

according to NREL [2025]). The natural consequence would be a stronger incentive to invest in wind

and PV production, calling for cautious design of subsidy schemes.

Our main results of this sensitivity analysis with respect to the cost of renewables are concatenated in

Figure 6. The ranking of benchmarks with respect to welfare is preserved; we observe interestingly that,

compared with the fully incomplete benchmark, Current regulation diminishes welfare to a much greater

extent in this sensitivity test. This is because over-investments in renewables are more pronounced, re-

ducing nuclear capacity dramatically. Compared with the base case, the amplitude of negative prices

here is substantially higher when the market is fully incomplete, both under Current regulation and

also when contracts are optimized. Interestingly, when the financial market is complete, we still observe

some negative prices, reflecting the fact that total elimination of negative prices would entail some over-

investments in storage, ultimately diminishing welfare. Negative prices also persist when contracts and

markups are optimized, as they result from the limited storage capacity induced at optimality. These

findings underscore the idea that enhancing social welfare may come at the cost of enduring negative

prices, especially when storage assets are not subsidized, as is the case in Europe today. Naturally, the

results would have been different if we had applied an alternative optimization criterion in the upper

level, such as a criterion that explicitly penalizes the occurrence of negative prices in the objective func-

tion. Furthermore, these findings highlight the even more crucial need to consider subsidizing storage

batteries along with renewable production if policymakers aim to reduce the occurrence of negative

prices.
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Figure 6: Results in the presence of lower investment costs of RES and storage technologies, calibrated with 2025 data.

5 Policy recommendations and concluding remarks
The profusion of research in energy economics and OR that studies the negative impact of risk aversion

on investments in renewable technologies may have supported the belief that risk-sharing and risk-

mitigating instruments invariably foster welfare and promote green investments. Our research high-

lights some limitations of this philosophy. While we demonstrate that, when risk cannot be swiftly

traded between agents investments in RES production and storage are indeed limited, ultimately dimin-

ishing welfare, we also show that poorly designed contracts—such as Fixed-Price CfDs as implemented

in many European countries—can cause greater damage to welfare by driving massive over-investments

in wind and PV. A direct consequence of this imbalance is an abnormally high rate of negative prices in

the market, mirroring what we are observing today. This phenomenon has even led some analysts to

suggest that markets are in a crisis regime. Such a result is the consequence of market distortions and

moral hazard when producers are not sufficiently exposed to market risk. Our research indicates that

an arbitrage must be found between risk mitigation of green technologies and efficient bidding in the

spot market when designing the kinds of contracts that will be implemented in the economy. In addi-

tion, our methodological proposal to model this choice explicitly via a bi-level approach looks promising.

Our first policy recommendation is that policymakers and energy economists should carefully bal-

ance risk-hedging and market distortions when proposing risk-sharing instruments to renewables in the

market, primarily by incorporating some flexibility into their design. Indeed, when analyzing Gener-

alized CfDs with markups, we were able to show their potential along multiple dimensions: first, they

enhance welfare as compared with current implementations and bring the system closer to the ideal

benchmark of a complete market for risk. Second, they encourage relatively adequate levels of RES and
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battery investments and, third, they also limit the amplitude of negative prices, at least with respect

to some basic current implementations in our base case. In particular, our findings suggest that solar

production should be protected from price risk but to a lesser extent than wind production. This is be-

cause solar irradiation follows a pattern that is perhaps more correlated with negative prices than wind.

These observations support our second policy recommendation: the complete removal of RES subsidies,

as proposed in some countries, might be inadvisable. Our findings indicate that, while certain subsidy

schemes perform worse than the incomplete market benchmark, others can yield significantly better out-

comes, starting by conditioning the remuneration of contracts on the non-negativity of market prices.

The third policy recommendation focuses on storage subsidies. Our findings indicate that the prof-

itability of the storage business model depends heavily on renewable-energy subsidy schemes. Without

proper risk-sharing mechanisms, investment in storage capacity remains dramatically low, exacerbating

the occurrence of negative prices. Given the energy transition’s reliance on intermittent green electricity

production, we strongly recommend that policymakers explore the possibility of providing subsidies en-

couraging battery storage to eliminate negative prices and provide the system with the needed flexibility.

Our model represents a first step in the process of finding optimal risk-mitigating instruments for the

power system. It is intended to serve as a proof of concept that demonstrates, in a deliberately simple

framework, that bi-level methods can help policymakers in this endeavor. To preserve the generality

and explicative capacity of our approach, we had to simplify our modeling in many respects. First, our

representation of the lower level can be enhanced by accounting for grid congestion costs and other

technical constraints, such as ramp-up constraints, pertaining to the functioning of power plants and

storage devices. Of course, other risk-mitigating schemes, such as capacity remuneration contracts and

mechanisms that also hedge volume risk, can be optimized on the upper level. Second, strategic gaming

by producers in the contracting stage and when operating in the spot market could enhance the realism

of our approach when applied to systems that are dominated by large incumbents. Finally, other adapted

heuristics for solving the bi-level problem more efficiently could be investigated with the objective to

increase the number of representative days and scenarios modeled. All these enhancements could be

considered and tested in future research.
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APPENDIX

A Proof of Theorem (1)
Proof. In this proof we demonstrate that set H can be cast into a compact set. First, it should be easy to see

that our complementarity conditions (13), (18), (21), and (24), which define Sol (λ,β), are schematically

a concatenation of equations of the form

variable ≥ 0, F(variable) ≥ 0, variable.F(variable) = 0, (51)

or of the form

G(variable) = 0, (52)

with F and G representing continuous functions. In addition, all risk sets are closed because they are

compact. Therefore, set
{
(X ,λ,β) ∈ Rm+2n s.t. X ∈ Sol (λ,β)

}
is closed. This implies that set H is

also closed. We turn now to demonstrating that any solution to (30) can be bounded to obtain compact-

ness. We proceed in two steps.

Step 1. First, we demonstrate that, for any upper-level variable (λ,β) ∈ R2n, any lower-level solu-

tion X ∈ (λ,β) can be cast into a bounded set. We carry out the reasoning for a given producer i ∈ I

and remark that it applies to all other producers. Consider a producer i. Its production xt
i (ω) is bounded

because of the second equation in (24). If capacity Ki is higher than this bound, all scarcity rents µt
i(ω)

would equal zero, which would violate the investment criterion, i.e., the third equation in (13).

We now show that market prices are bounded. If the market price pt(ω) is not bounded for some

hour t and scenario ω, then, by the first equation of (13), scarcity rents for all producers i′ ∈ I′ are un-

bounded at t and ω (we remind the reader that these are producers for which λi′ = 1), which contradicts

investment criterion CIi′ − ∑ω∈Ω ζ∗i (ω)
(

∑T
t=1 µt

i′(ω)gt
i′(ω)

)
≥ 0 under Assumption H1 and assuming

that at least one technology i′ ∈ I′ is available for some ω ∈ Ω and t ∈ T: ∃i′ ∈ I′ such that g′ti (ω) > 0.

The latter assumption is natural for thermal plants which, indeed, are not subsidized.

We now demonstrate that scarcity rents µt
i(ω) can be bounded. If the production profile gt

i (ω) is zero

for some scenario ω and hour t, then variable µt
i(ω) is degenerate and, without any loss of generality, we

can make it equal to −COt
i (ω) + βi − δi pCO2(ω) + λi pt(ω) + (1 − λi) si while respecting all equations of

(13), which makes µt
i(ω) bounded. If gt

i (ω) > 0, then the investment criterion (third equation of (13)) is

violated under Assumption H1 if µt
i(ω) is not bounded.

Risk-adjusted probabilities are bounded because they belong to compact risk sets. We now prove

that demand variables dt(ω) are bounded. If this is not the case for some ω and t, then relationship (21)

implies that pt(ω) = at(ω)− bt(ω)dt(ω), contradicting the fact that prices are bounded.

Regarding the storage operator, as in our treatment of producers, we can prove that variables µt
s(ω),

νt
s(ω), and σt

s(ω) are bounded. Operational decisions regarding battery xt
s(ω) are bounded as a natural
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consequence of market-clearing conditions dt(ω)− ∑n
i=1 xt

i (ω)− xt
s(ω) = 0 and the fact that electricity

production is always bounded for all scenarios and hours. This implies, following the reasoning we

applied to producers, that capacity Ks is bounded as well.

Step 2. We demonstrate now that any upper-level solution to (30) (λ,β) ∈ R2n can be cast in a

bounded set. Of course, all λi, i ∈ I are bounded because, by construction, λi ∈ [0, 1], ∀i ∈ I. Assume

βi ≥ 0 is un-bounded for some i. If Ki = 0, we have a degenerate case, as βi can take any non-negative

value. Without loss of generality, we can assign a zero value to βi without changing anything with

respect to our problem. If Ki > 0, by the first equation of (13), scarcity rents µt
i(ω) are un-bounded

for all scenarios ω and hours t. Given that production levels xt
i (ω) are bounded because of the CO2

constraint, which in turns implies that Ki is bounded, if µt
i(ω) are un-bounded for all scenarios ω and

hours t, the investment criterion, i.e., the third equation in (13), is violated under Assumption H1 and if

∃(ω, t) ∈ Ω × T such that gt
i (ω) > 0. This latter condition is actually a very natural claim; otherwise, the

technology is worthless for the system.
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