
 

 

 

 

 

 

 

 

 

 

Cambridge Judge Business School 

Working Paper No. 02/2025 

 

 

 

TECHNOLOGY 
SPILLOVERS FROM THE 
FINAL FRONTIER: A 
LONG-RUN VIEW OF U.S. 
SPACE INNOVATION 

 Luisa Corrado, Stefano Grassi & Aldo Paolillo 

 



 

 

Cambridge Judge Business School Working Papers 

These papers are produced by Cambridge Judge Business School, University of Cambridge. 
They are circulated for discussion purposes only. Their contents should be considered 
preliminary and are not to be quoted without the authors' permission. 

 

Cambridge Judge Business School author contact details are as follows: 

Luisa Corrado, Visiting Research Fellow 
Cambridge Judge Business School 
University of Cambridge 
Email: l.corrado@jbs.cam.ac.uk 

 

Please address enquiries about the series to: 

Research Manager 
Cambridge Judge Business School 
University of Cambridge 
Trumpington Street 
Cambridge CB2 1AG 
Email: research-support@jbs.cam.ac.uk 

 

 



Technology Spillovers from the Final Frontier: A Long-Run

View of U.S. Space Innovation∗

By Luisa Corrado†, Stefano Grassi‡and Aldo Paolillo§

Recent studies suggest that space activities generate significant economic

benefits. This paper attempts to quantify these effects by modeling both

business cycle and long-run effects driven by space sector activities. We

develop a model in which technologies are shaped by both a dedicated R&D

sector and spillovers from space-sector innovations. Using U.S. data from

the 1960s to the present day, we analyze patent grants to distinguish be-

tween space and core sector technologies. By leveraging the network of

patent citations, we further examine the evolving dependence between space

and core technologies over time. Our findings highlight the positive impact

of the aerospace sector on technological innovation and economic growth,

particularly during the 1960s and 1970s.
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2 TECHNOLOGY SPILLOVERS FROM THE FINAL FRONTIER

I. Introduction

The space sector has experienced significant change, transitioning from its Cold War ori-

gins, characterized by public-sector-led geopolitical rivalry, to a dynamic, commercially

driven sector. The early space race sparked groundbreaking technological advancements

in space transportation systems, satellites, and communication systems, with lasting im-

pacts on scientific research and technology, see Forbes (2020). For instance, Fishman

(2020) reports that the Apollo program required the development of a large number of

new technologies such as the world’s largest rocket, the world’s smallest and fastest com-

puter, the world’s first high-speed data network, space suits, and space food. The pursuit

of space exploration has also led to revolutionary advancements in physics, chemistry,

material sciences, and engineering, many of which have been successfully adapted for

industrial applications, see Hertzfeld (2002). Today, decreasing costs of spacecraft de-

velopment and advances in remote sensing have enabled private companies, like SpaceX

and Blue Origin, to enter the space sector marking the beginning of a New Space Age

(NSA), see Weinzierl and Sarang (2021) and Corrado et al. (2023a). This shift, driven by

public-private partnerships (Rausser et al., 2023) has fostered a more decentralized and

competitive sector with the potential to influence other industries with new economic

activities in the space sector, see Weinzierl (2018) and Crawford (2016).1 The histori-

cal and ongoing impact of space activities requires a comprehensive evaluation of their

technological and economic consequences (Beldavs and Sommers, 2018).

This paper examines the technological and economic effects of space activities in the U.S.

from the 1960s to the present day, focusing on the diffusion of space-driven innovations

across the broader economy.2 In particular, we examine how technologies originating in

the space sector diffuse across other sectors, driving productivity gains that contribute

to broader economic growth. For instance, advancements in telecommunication systems,

such as satellite-based networks, have revolutionized global connectivity, while innovations

in material science, originally developed for spacecraft, have led to the creation of lighter,

stronger, and more heat-resistant materials now used in various industrial applications.

To quantify these effects, we employ a business cycle-endogenous growth model combined

with new historical data on patenting activity, to disentangle the role of space-related

innovations in driving GDP growth and its fluctuations.

The economic effects of space activities can be classified as direct and indirect. Direct

effects are the innovations generated in the space sector for the space sector, such as new

1For a detailed discussion of the opportunities and challenges of the space economy, as well as a review of
the economic methodologies used to analyze them, see Corrado et al. (2025). Key opportunities include scientific
exploration, planetary defense, space settlement, and resource extraction. However, these ventures face techno-
logical, financial, and regulatory challenges, as high development costs, unclear property rights, and unregulated
competition could lead to geopolitical tensions and negative externalities such as space debris and environmental
risks, see Macauley (2015), Adilov et al. (2015), Klima et al. (2016), Rao et al. (2020), and Guyot et al. (2023).

2We focus on the U.S. due to its historical leadership in space exploration and its continued prominence in the
space sector. Hertzfeld (2007) analyzes the role of the U.S. in the context of globalization in accessing outer space.
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satellite technologies or new launch vehicle systems (O’Connor et al., 2019, Voigt et al.,

2007). Indirect effects, or spillovers, are innovations generated in the space sector, such

as solar cells or memory foam, that find applications in other sectors. The economic

effects of space activities can also be distinguished into business cycle effects—stemming

from increases in employment, investment, and income generated by the space sector,

and long-term effects driven by technological progress. Our paper examines all these

dimensions by analyzing both the short-term macroeconomic fluctuations linked to space

sector activity and the long-term impacts on technology, productivity, and growth. This

places our study in relation to several existing strands of research, which we review in the

following section.

I.A. Literature Review

The economic effects of space activities can be analyzed from both a microeconomic and

a macroeconomic perspective. The microeconomic approach examines how space-related

innovation and investment influence specific industries and regions, while the macroeco-

nomic perspective studies their impact on broader economic aggregates. From a microe-

conomic perspective, Jaffe et al. (1998) examine NASA’s patenting activity between 1963

and 1994, and analyze trends in space-related innovation and their wider impact. They

document a peak in NASA patents in the early 1970s, followed by a decline, attributing

these fluctuations to shifts in research funding and patenting incentives. Their study also

examines the quality of NASA patents, highlighting that they were broader and very

influential until the late 1970s, when their impact waned.

Kantor and Whalley (2023) use historical U.S. county-industry data and a patent-based

measure of space technology capability to assess the impact of NASA’s R&D investments

on local economic outcomes. They find that NASA activity led to greater growth in man-

ufacturing value added, employment, and capital in counties and industries specialized

in space technologies, but they detect no significant productivity gains, suggesting lim-

ited local technological spillovers. Their microeconomic focus is on the effects of NASA’s

contractor spending on local manufacturing, providing insight into how space-related in-

vestments influence specific industries at the regional level. At the same time, broader

technological diffusion can unfold over longer horizons and extend beyond the manufac-

turing sector through indirect channels such as research collaborations and cross-industry

spillovers.

In the macroeconomic strand of the literature, Evans (1976) applies an input-output

model to estimate the broader economic impact of NASA’s R&D expenditures, distin-

guishing between short-term demand effects and long-term productivity gains. More re-

cently, Highfill and MacDonald (2022) employs supply-use tables, from national accounts,

to quantify the direct and indirect economic contributions of the space sector. Their study
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tracks space-related activity across industries; however, it does not incorporate spillovers

from technological advancements. Corrado et al. (2023b) develop a real business cycle

model with endogenous growth to examine technological spillovers from the space sector

to the economy. They find that technological progress from space sector activity has a

positive impact on economic growth.

I.B. Contribution and findings

Building on these studies, we introduce a microfounded R&D sector in a macro model

characterized by space sector and a core sector. Technologies emerge from both generic

R&D and space sector activities, featuring a distinct spillover mechanism from space to

core technologies. For model estimation, we combine a large patent and citation network

dataset in addition to aggregate macroeconomic variables. Our macroeconomic model,

which includes both business cycle and endogenous growth elements, helps distinguish

short- and long-term effects of space activities. Business cycle effects are temporary

fluctuations in income and consumption triggered by increases in space sector demand.

Endogenous growth effects involve the creation of new patents in the space sector, adopted

by the core sector to build new technologies, thus enhancing productivity and long-term

economic growth.

Our paper connects to the broader literature on endogenous growth in general equilib-

rium models (e.g., Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt, 1992).

It extends medium-scale macroeconomic models with an R&D sector (e.g., Comin and

Gertler, 2006; Bianchi et al., 2019; Anzoategui et al., 2019) by explicitly modeling space

activity as a distinct driver of technological progress. This framework enables us to ana-

lyze the impact of space sector spillovers on economic growth and examine counterfactual

scenarios with different degrees of spillovers. To estimate the model, we exploit a novel

dataset of U.S. patent data from Berkes (2018) which provides insights on technological

innovation in the space and core sectors.

From the patent data point of view, our contribution is twofold. By leveraging the

information on patents generated in the space sector from the dataset, we empirically

measure the development of new space technologies over time. Moreover, using the cita-

tion network of the patent dataset, we measure the spillover effects into the core sector

of patents generated from space activities and, through our model, evaluate their impact

on technology and economic growth.

Our main finding is that space activities generate positive economic effects, with dif-

ferent intensities over time. The strongest effects are observed in the 1960s, decline

significantly in later decades. In particular, the impact of space activities on the creation

of new technologies in the space sector (defined as space innovation productivity) reached

its peak in the 1960s and the lowest levels in the 2000s. We perform a simulation exercise
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to evaluate the economic impact of a space sector shock (a given increase in space sector

production) under scenarios of high and low space innovation productivity. We simulate a

1% increase in space sector production and compare its long-term effects during the high

space innovation productivity of the 1960s and the lower space innovation productivity

of the 2000s. In the 1960s, when space innovation productivity was at its peak, such a

shock results in a long-run increase in real GDP by 0.51 basis points, boosting potential

output permanently. Conversely, from the 1980s onward, with reduced space innovation

productivity, the same shock leads to a smaller long-term increase in real GDP of 0.27 ba-

sis points. These findings indicate that the overall economic impact of space activities has

waned over time, emphasizing the need to understand the changing role of technological

spillovers from the space sector.

Our model also evaluates the economic returns of space sector spillovers by analyz-

ing fiscal multipliers across different time horizons, distinguishing between short-term,

medium-term, and long-term effects. We find that in the first part of the space race,

space-related investments had significantly higher multipliers than in more recent periods.

In particular, during the high space innovation productivity of the 1960s, the long-run

total multiplier exceeds one, reaching 2.2 when discounted and 6.0 when non-discounted.

This implies that space expenditures have generated permanent economic gains beyond

their initial stimulus, with long-lasting effects on technological progress and economic

growth.

The paper proceeds as follows. Section II describes the patents data and the construc-

tion of the citation network. Section III describes the endogenous growth model. The

macroeconomic dataset with the identification strategy is presented in Section IV. Section

V presents the empirical results. Finally, Section VI draws the conclusions.

II. Patent Data and Citation Network

Patent data are widely used to assess the impact of R&D activities on technological

progress. Despite potential limitations, such as noise in patent counts (Jaffe et al., 1998),

patents remain a valuable indicator of knowledge diffusion and technological change, see

(Griliches, 1990). Until now, patent data have not been used to quantify both the direct

impact of space activities in generating innovations in the space sector and their indirect

impacts (spillovers) on other sectors. By analyzing space technology patents, along with

their classifications and citations network, we quantify the extent to which innovations

from the space sector spread throughout the industry.

II.A. Description of Patent Data

Our analysis is based on the Comprehensive Universe of U.S. Patents (CUSP) database

of Berkes (2018), which provides a complete historical record of patents granted by the
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United States Patent and Trademark Office (USPTO) from 1836 to 2015. Given the

patent data coverage, we focus on patents granted between 1920 and 2015, which aligns

our analysis with the development of the modern aerospace industry. The dataset we use

includes over 7.5 million patents and approximately 71 million citation links. In the CUSP

dataset, each patent is classified using the U.S. Patent Classification (USPC) system. We

merge the patent data classified according to USPC with the North American Industry

Classification System (NAICS) using the 2014 USPTO–NAICS concordance table.3 This

mapping allows us to assign patents to specific economic sectors, including the space

sector, and to track their technological evolution and interconnections over time. In the

context of our model, this classification enables us to distinguish between space-sector

and core-sector innovations and to study how technological developments in the space

sector propagate to the rest of the economy.

To assess the dynamics of innovation in the space sector, we define the space innovation

intensity (F data
s,t ) as the ratio of space sector to core sector patents within a quarter.4

This measure considers the technological classification of each patent to determine its

sectoral contribution. Details about the construction of this measure, including weighting

procedures, aggregation rules, and sectoral assignment, are in Appendix VII. The resulting

series is plotted in the upper panel of Figure 2.1. The plot indicates that space sector

innovation reached a peak in 1960:Q2 at about 2.8%, followed by a gradual decline, hitting

a low of 0.80% in 1999:Q1.

II.B. Network-Based Spillover Measurement

To analyze the technological spillovers from the space sector to other economic sectors,

we use patent citations as indicators of knowledge transfer. For example, when a patent

cites another patent, it signals a knowledge spillover from the cited innovation to the cit-

ing one. A terrestrial communication patent citing a satellite communication patent, for

instance, suggests that advancements in satellite technology have contributed to improve-

ments in terrestrial communication systems. A direct citation occurs when a patent cites

a space sector patent. Indirect citations occur when a patent cites another patent that

references space-related technologies, capturing indirect knowledge spillovers. To measure

these effects, we construct a citation network in which each patent is a node and citations

form directed links. This network structure allows us to track knowledge diffusion over

time. To illustrate how the citation network captures technological diffusion, we present

an example centered on a key patent granted in 1973—U.S. Patent 3,781,647—which

3The concordance table links the USPC, as of December 31, 2014, to 26 NAICS product fields. It is available
from the U.S. Patent and Trademark Office: https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/naics_
conc/2014/.

4We use the superscript ‘data’ to distinguish this empirical measure from its model counterpart, defined in
Section IV.

https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/naics_conc/2014/
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/naics_conc/2014/
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Figure 2.1. : In the upper panel, the space innovation intensity (F data
s,t ) is the ratio of space sector to core sector

patents. In the lower panel, the naive spillover measure (Rnaive
s,t ) is the fraction of core sector patents

that directly cite at least one space sector patent. The network-based spillover measure (Rdata
s,t )

accounts for indirect knowledge diffusion through the full citation network. All measures are computed
quarterly based on the grant dates of the corresponding patents.

Figure 2.2. : Citation network centered on the solar patent —U.S. Patent 3,781,647— (large red node). The graph
displays all patents that directly cite the central patent (medium-sized nodes), and indirect citations
(smaller nodes), forming a two-generation network. Nodes are colored by the technological sector.
For clarity, we restrict the visualization to the shortest citation paths, omitting multiple linkages to
the central patent and cross-citations among citing patents.
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proposes a system for transmitting solar power from space.5 This patent belongs to the

space sector (as classified by NAICS code 3364) and ranks among the most influential

in our dataset based on network centrality measures. Its prominence makes it a useful

case for visualizing how knowledge propagates from a space-related innovation through

successive generations of citations. Figure 2.2 displays the solar patent in the center (big

red node) and the network of patents that directly cite it (medium-sized nodes), as well

as the indirect citations (smaller nodes). All the nodes are colored according to their

technological sector. This example provides an intuitive visualization of how innovation

spreads across technological domains.

We extend the analysis from a single patent to the entire set of space-sector patents, to

measure how core-sector innovations rely on space-related knowledge through both direct

and indirect citation linkages.6 We then construct time-aggregated measures of these

spillovers, which are used to feed the technological component of our macroeconomic

model. A naive spillover measure (Rnaive
s,t ) computed as the fraction of core sector patents

that directly cite at least one space sector patent is reported in the lower panel of Fig-

ure 2.1. However, this measure overlooks the broader structure of technological diffusion,

where influence can also flow through indirect linkages. To address this limitation, we

apply the PageRank algorithm developed by Brin and Page (1998). Originally introduced

to rank webpages by analyzing the structure of hyperlinks, PageRank has been success-

fully applied to other sparse and fragmented networks, including scientific and patent

citation networks (Gleich, 2015). In our context, we apply the PageRank algorithm to

the network of patent citations to measure the relevance of patents based on both direct

and indirect technological influence.

PageRank generalizes the Rnaive
s,t by capturing each patent’s position in the broader

citation network (see Appendix VIII). While the naive measure counts only direct cita-

tions to space-sector patents, PageRank also considers indirect linkages by assigning each

patent a dependency score based on the patents it cites. A patent receives a high depen-

dency score if it cites other patents with high scores. As a result, a core-sector patent

shows stronger reliance on space-related knowledge if it builds upon core technologies

that themselves cite space-sector patents. This recursive structure allows us to track the

diffusion of space-related innovations through multiple layers of the citation network. To

derive the dependency scores, we apply the PageRank algorithm under two initialization

schemes: one that highlights patents citing space-sector technologies, and another that

assigns equal weight to all patents. The ratio of the two scores defines our spillover in-

5Method and Apparatus for Converting Solar Radiation to Electrical Power, invented by Peter E. Glaser and
assigned to Arthur D. Little Inc. Granted on December 25, 1973. See Glaser (1973).

6While one could also compute spillovers from the space sector to itself, these are quantitatively small in our
data and fall outside the main focus of this paper. For simplicity and relevance, we restrict attention to spillovers
from the space sector to the core economy. Exploring intra-space spillovers may be a valuable direction for future
research.
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dicator, Rdata
s,t , which tracks the relative extent to which core-sector patents depend on

space knowledge over time. Appendix VIII provides a full description of the algorithm, its

implementation, and the relationship between the naive and network measures. The lower

panel of Figure 2.1 shows that Rdata
s,t peaks at 9.6% in 1965:Q1 and gradually declines to

6.15% by 2011:Q1.

II.C. An Illustrative Example

In this Section, we use the PageRank methodology to track the technological depen-

dency on space-related patents of four key economic sectors. Rather than focusing on

aggregate technological spillovers in the core sector, we provide a zoomed view of industry-

specific dependencies on space-sector innovations. We consider four key core sectors that

have been historically influenced by space-related innovations (see Hertzfeld, 2002).

These sectors are: (i) Computer and Peripheral Equipment, (ii) Communication Equip-

ment, (iii) Navigation, Measurement, Electromedical, and Control Instruments, and (iv)

Electrical Equipment, Appliances, and Components.7 For each sector, we compute the

dependency score Rdata
s,t , which quantifies the extent to which patents in that field rely on

space-sector technologies. To understand what drives the aggregate spillover to the core

sector (shown in the lower panel of Figure 2.1), we perform a counterfactual analysis. We

compute Rdata
s,t assuming that spillovers are confined within each key sector (Computer,

Communication, Navigation, and Electrical Equipment), while setting spillovers to zero

in the remaining core sectors. Average dependency scores of patents in each sector are

computed for each quarter. These sectoral spillovers reveal the extent to which these key

technological areas contribute to the overall spillover, as illustrated in Figure 2.3, which

traces their evolution over time.

The results in Figure 2.3 show distinct diffusion patterns of space technologies into

different core economy sectors over time. In the Computer and Peripheral Equipment

sector, spillover scores remain below 0.10% and stable until around 1990, after which

they dramatically increase to about 0.50% by 2010. This rise coincides with the com-

puting industry’s growth during the digital revolution and is mainly driven by increased

computer-related patent activity, rather than a greater reliance on space-related knowl-

edge per patent. In the Communication Equipment sector, a similar trend is observed,

with spillover measures steadily rising from the early 1990s, linked to the telecommu-

nication technology diffusion during the Internet and mobile communications boom. In

the Navigation, Measurement, Electromedical, and Control Instruments sector, there is

a consistently high dependency on space technologies, with a continued upward trend

in spillovers during the 2000s, albeit less steep than in computing or communications.

7These sectors correspond to the following NAICS codes: Computer and Peripheral Equipment (3341), Com-
munication Equipment (3342), Navigational, Measuring, Electromedical, and Control Instruments (3345), and
Electrical Equipment, Appliances, and Components (335).
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Figure 2.3. : Sectoral dependency scores on space-sector patents (Rdata
s,t ), computed using the PageRank methodol-

ogy. Each panel shows the contribution of a key technology sector to the overall core-sector spillover,
under a counterfactual in which spillovers are set to zero outside the sector considered. This de-
composition highlights how reliance on space knowledge has evolved across distinct domains. Rdata

s,t

is computed quarterly based on patent grant dates. Sectors include: (i) Computer and Peripheral
Equipment (NAICS 3341), (ii) Communication Equipment (NAICS 3342), (iii) Navigation, Mea-
surement, Electromedical, and Control Instruments (NAICS 3345), and (iv) Electrical Equipment,
Appliances, and Components (NAICS 335).

Finally, though the Electrical Equipment, Appliances, and Components sector does not

display the most dynamic spillover growth, it maintains high dependency levels, indicat-

ing stable integration of space-derived technologies despite not being the primary channel

for recent innovation spillovers from space.

Our baseline model captures the effects of space activity on the broader U.S. economy

through a representative core sector, focusing on aggregate outcomes. To further explore

sector-specific dynamics, we conclude Section V with a counterfactual analysis that trans-

lates the granular spillover patterns from Figure 2.3 into differentiated economic impacts,

transmitted through key sectors.

III. Baseline Model Description

The economy is composed at each time t by the core sector (Sc), the space sector (Ss),

households, the space sector customer, and the R&D sector. The space sector customer

is represented by the public space agency (e.g., NASA) or the private company8 (e.g.,

SpaceX) who requires the output (e.g., rockets) produced by the space sector (e.g., Boeing

or SpaceX itself). The firms in the two sectors are divided internally into intermediate

8Although many large private companies are involved in recent space activities, the majority of SpaceX’s early
contracts were public contracts, and both NASA and the Department of Defense remain its main customers. The
same applies to Blue Origin and the majority of launch companies.
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and retail branches. Figure 2.4 shows a flowchart of the economy, where time t subscripts

are omitted for convenience.

Households

Space Sector
Customer

Retail
Core Sector

Retail
Space Sector

Technology
Zc , Zs , A

R&D Sector

Intermediate
Core Sector

Intermediate
Space Sector

nsnc

kc ks

Yc

Ys

∫ A
0 Mc,jdj

∫ A
0 Ms,jdj

New Products New Products

S

Zs

Figure 2.4. : The flowchart of the economy. The arrows represent the flow of the indicated variables. Yc and Ys

are the final goods produced by firms and demanded by households and the space sector customer,
respectively; kc and ks represent the capital stocks rented by households to the core sector and space
sector firms; nc and ns are the hours of work supplied by the households to the core sector and space
sector firms; the number of intermediate technologies used in production is denoted as A, whose
growth depends on adoption of existing technologies in the two sector, Zc and Zs; finally, S denotes
the resources allocated by the R&D sector for developing new technologies.

Households consume the core sector goods (Yc), and the space sector customer sets the

demand for the space sector goods (Ys). The demand for space sector goods is funded with

the resources provided by the households through taxation (Ts).
9 The households also

supply labor (nc, ns) and lend capital (kc, ks) to firms in the two sectors. Firms in both

sectors operate the production processes that take as input intermediate goods produced

by intermediate firms (Mc, Ms), in addition to labor and capital. Innovators in the

R&D sector operate in a perfectly competitive environment and develop new technologies,

selling the rights to produce them (i.e., blueprints) to intermediate firms. The number of

intermediate goods (A), which is a proxy for technological progress, increases over time

due to three main forces: R&D by innovators, the development of new space technologies,

and spillovers from the space sector to the core economy.

Space Sector

Demand

The space sector customer exogenously sets the demand for space sector goods, choosing

the amount of space sector production at time t (Ys,t) and by fixing it as a share (gs,t) of

9The paper does not consider political factors or market-driven incentives that may affect space investment.
Likewise, the geopolitical determinants of space investment are outside the scope of this study.
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core goods production (Yc,t):

(2.1)
Ys,t
Yc,t

= gs,t.

The space sector share (gs,t) follows an exogenous autoregressive (AR) process:

(2.2) log(gs,t) = (1− ρs) log(χ) + ρs log(gs,t−1) + ϵs,t,

where χ is the steady state of the space sector share, ρs is the AR coefficient, and εs,t

is a zero mean Gaussian white noise representing the space activity shock with standard

deviation equal to σs.

Supply

The supply of space sector goods is provided by the space sector firms. Space sector

firms rent space sector capital (ks,t) and demand labor (ns,t) from households and employ

the intermediate input goods (M j
s,t, in number At) from intermediate space sector firms.

Space sector firms take the prices of these inputs (the wage rate ws,t, the capital rental

rate rks,t) and the intermediate goods price (Pm,j
s,t ) as given to maximize their nominal

profits:

(2.3) max
{ns,t,ks,t,M

j
s,t}

Ps,tYs,t − Ps,tws,tns,t − Ps,trks,tuks,tks,t−1 −
∫ At

0
Pm,j
s,t M j

s,tdj,

where Ps,tYs,t are the total revenues (Ps,t is the final space sector price), ws,tns,t is the

labor cost, rks,tuks,tks,t−1 is the capital rental cost and
∫ At

0 Pm,j
s,t M j

s,tdj is the cost of

purchasing the intermediate goods. The firm is subject to the production function:

(2.4) Ys,t = azs,t

[
(ns,t)

1−αs (uks,tks,t−1)
αs

]v
[Gs,t]

1−v ,

where Gs,t is a constant elasticity of substitution (CES) aggregator of intermediate inputs

with an elasticity of substitution equal to θm:

(2.5) Gs,t =

(∫ At

0

(
M j

s,t

) θm−1
θm

) θm
θm−1

,

where Ys,t is the output of the space sector, azs,t represents the short-term fluctuations in

the productivity of the space sector, which adds to the long-term productivity component

At; αs is the share of capital in the production function, v is a weight parameter for
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intermediate goods in production,10 and uks,t the capacity utilization of the capital stock

used for space sector production. The solution to this problem gives the optimal demand

schedule and is reported in Appendix IX.

Intermediate firms

The supply of intermediate goods in the space sector is provided by monopolistically

competitive intermediate firms. Each intermediate firm in the space sector produces a

differentiated variety j of the intermediate good (M j
s,t), using a production technology

that transforms one unit of the final good (Y j
s,t) into one unit of the intermediate good,

according to the linear function M j
s,t = Y j

s,t (see Anzoategui et al., 2019). Each inter-

mediate firm maximizes its profits, which are equal to revenues (Pm,j
s,t M j

s,t) minus costs

(Ps,tM
j
s,t). In real terms, the profits of the intermediate firm j in the space sector (Dj

s,t)

are expressed as:

(2.6) Dj
s,t =

(
Pm,j
s,t − Ps,t

)

Ps,t
M j

s,t.

The intermediate firm maximizes these profits subject to the demand from space sector

firms, Appendix IX reports these demand equations. The solution (in a symmetric equi-

librium) to this problem pins down the relative price of intermediate goods over final

goods (pms,t ≡ Pm
s,t/Ps,t) as to fix a constant markup ( θm

θm−1) between the marginal revenue

(the price of one unit of the intermediate good, Pm
s,t) over marginal costs (the cost of

transforming one unit of the final good into one unit of intermediate good, Ps,t):

(2.7) pms,t =
Pm
s,t

Ps,t
=

θm
θm − 1

.

Combining the intermediate inputs demand (eq. A2.4 in Appendix IX) with the supply

(eq. 2.7) and imposing a symmetric equilibrium (M j
s,t ≡ Ms,t), an expression for the

quantity of each intermediate good can be found, allowing us to rewrite production (2.4)

as a function of labor and capital only. We report this derivation in Appendix IX.

The space sector customer finally buys the space sector goods from retailers and finances

this expenditure by levying taxes on households. The expression for space sector taxes is:

Ts,t = ws,tns,t + uks,trks,tks,t−1 +At

(
pms,tMs,t

)
,

where the right-hand side (r.h.s.) equals the costs paid to produce space sector goods

(see eq. 2.3), after imposing symmetry (i.e., M j
s,t = Ms,t) and substituting

Pm
s,t

Ps,t
= pms,t.

10To ensure the existence of a balanced-growth path, v must satisfy the following relationship: v = 1/(αs(1 −
θm) + θm), see Annicchiarico and Pelloni (2021).
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Core Sector

The core sector is symmetric to the space sector and is also divided into the retail and in-

termediate branches. It faces an analogous maximization problem subject to a production

technology that is isomorphic to that of the space sector:

(2.8) Yc,t = azc,t

[
(nc,t)

1−αc (ukc,tkc,t−1)
αc

]v
[Gc,t]

1−v ,

where Gc,t is a CES aggregator of core sector intermediate inputs (M j
c,t):

Gc,t =

(∫ At

0

(
M j

c,t

) θm−1
θm

) θm
θm−1

.

Appendix IX provides a detailed derivation of the decision problem of firms in the core

sector.

Households

The households choose the sequence of consumption (ct), hours worked (nc,t and ns,t),

amounts of investment in the capital stocks (ic,t and is,t) and fractions of capital to be

used in production (ukc,t and uks,t) in the two sectors, to maximize lifetime utility:

(2.9) E0

∞∑

t=0

(βΓ)t aζ,t

[
log(ct)− φtφ

c
n1+νc
c,t

1 + νc
− φtφ

s
n1+νs
s,t

1 + νs

]
.

Eq. (2.9) describes the discounted flow of utility coming from consuming the core goods,

less the disutility of supplying labor to the two sectors. The parameter β is the intertem-

poral discount rate, which is scaled by the gross growth rate of the economy (Γ) to take

into account technological progress. The parameter aζ,t is the discount factor shock, and

φt is the labor supply shock. Parameters νc and νs determine the curvature of the labor

disutility and measure the elasticity of labor supply to the wage rate. The weights φc

and φs are scale coefficients that impose steady-state values for hours worked that are

consistent with historical averages in the data.

Households satisfy the following budget constraint while maximizing utility:

(2.10) ic,t + ps,tis,t + ct + bt =
Rt−1bt−1

πc,t
+ wc,tnc,t + ps,tws,tns,t + rkc,tukc,tkc,t−1

+ ps,trks,tuks,tks,t−1 − ps,tTs,t +Dt −Ψt.

In eq. (2.10), the elements on the r.h.s represent the net source of funds coming from

wage income in the core sector (wc,tnc,t) and in the space sector (ps,tws,tns,t), returns

on capital rented to core firms (rkc,tukc,tkc,t−1) and space firms (ps,trks,tuks,tks,t−1), and
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liquidity from assets represented by expiring bonds (bt−1). Bonds are issued in nominal

units in terms of the numeraire (the core good) and have a risk-free gross yield equal to Rt,

so the real gross returns are given by Rt−1bt−1/πc,t, where πc,t denotes the inflation rate

of the numeraire (Pc,t/Pc,t−1). Households also provide the space sector customer with

the resources needed to finance the demand for space sector goods (ps,tTs,t). The term Dt

contains profits from intermediate firms in the two sectors. The variable Ψt collects the

convex adjustment costs related to investment and capacity utilization.11 The elements

on the left-hand side (l.h.s.) show how available funds are allocated between consumption

(ct), investment in core sector capital (ic,t) and investment in space sector capital (is,t)

and new bonds (bt). Investments in both sectors, ic,t and is,t, are equal to the difference

between the new capital minus the previous period capital stock, net of depreciation:

ic,t = kc,t − (1− δkc) kc,t−1, and is,t = ks,t − (1− δks) ks,t−1,

where the parameters δkc and δks are the capital depreciation rates for the core and space

sectors. The first-order conditions related to the household problem are presented in the

Appendix IX.

Technology

Based on the literature that integrates business cycle dynamics and endogenous growth

(Comin and Gertler, 2006; Bianchi et al., 2019; Anzoategui et al., 2019), we model technol-

ogy as an endogenous variable that drives the long-run evolution (trend) of real variables.

Following Comin and Gertler (2006) and Anzoategui et al. (2019), we assume that new

technologies need time to be adopted. In line with these authors, we distinguish between

existing technologies (Zt) and adopted technologies (At). As outlined in eq. (2.5), At

represents the technologies actively used in production processes in both sectors, which

directly affect productivity. Unlike Anzoategui et al. (2019), we extend the model by

introducing a two-sector technology. We assume that the aggregate stock of existing

technologies (Zt) consists of space-sector (Zs,t) and core-sector (Zc,t):

Zt = Zc,t + Zs,t.

11Ψt contains the adjustment costs related to investment in the core sector (Ψkc,t), the adjustment costs related
to investment in the space sector (Ψks,t), capacity utilization in the core sector (Ψuc,t) and capacity utilization in
the space sector (Ψus,t):

Ψt = Ψkc,t + ps,tΨks,t +Ψuc,tkc,t−1 + ps,tΨus,tks,t−1.

These adjustment costs depend on the parameters ηk, ηuc , and ηus . The parameter ηk determines how costly it
is to adjust the capital stock in both sectors, while ηuc and ηus govern the costs associated with changing the
utilization rate of capital in the core and space sectors, respectively. We provide the complete functional forms for
these costs in Appendix IX.
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The law of motion for adopted technologies links At with the technology from the previous

period (ϕAt−1) that survived, and with the (unadopted) existing technologies, defined as

the difference between total existing technologies and those that are adopted (Zt−1−At−1),

following the same specification used by Anzoategui et al. (2019):

(2.11) At = λϕ (Zt−1 −At−1) + ϕAt−1,

where ϕ denotes the quarterly survival rate of technologies. Eq. (2.11) implies that, at

each time t, an adopted technology has a probability ϕ to survive, and that a technology

in the pool of unadopted technologies (Zt−1−At−1) has a probability λ of being adopted,

conditional on its survival. The adoption probability (λ) is inversely related to the average

adoption lag (τ), according to the formula λ = 1
4τ . Therefore, when τ increases, the

probability λ decreases and adopted technologies (At) respond less to new technologies

generated in the core and space sectors.12 Dividing eq. (2.11) by At−1 we obtain its

stationary form which gives the stochastic growth rate of the economy (xt):

exp (xt) ≡
At

At−1
= λϕ

(
Z̃t−1 − 1

)
+ ϕ,

where Z̃t−1 represents detrended existing technologies (Zt−1/At−1). The growth rate xt

determines the balanced growth path of the real variables in the model and its steady-state

value is equal to the net growth rate of the economy, γ = log(Γ).

Space technologies

We assume that space technologies are related to space sector activities. The stock

of existing space sector technologies (Zs,t) depends on the number of technologies that

survive from the previous period (ϕZs,t−1) and on production in the space sector (Ys,t):

(2.12) Zs,t = ϕZs,t−1 + ξs,t−1Ys,t−1,

where ξs,t−1 denotes the productivity of space sector activities in generating new tech-

nologies. We assume, similarly to Comin and Gertler (2006), that ξs,t evolves according

to the following equation:

ξs,t = aξs,tξ̂s

(
At

Ys,t

)1−ϵs

= aξs,tξ̂sỸ
ϵs−1
s,t ,

12Differently from Anzoategui et al. (2019), we assume a constant λ. Explaining the procyclicality of technology
adoption (i.e., endogenous λt; see Comin and Gertler, 2006 and Anzoategui et al., 2019) is outside the scope of
this paper. To avoid being too restrictive in selecting this parameter, we estimate the adoption lag rather than
calibrating it (see Section IV). Note that, since λ and ϕ enter the model multiplicatively, they cannot be jointly
identified. We fix ϕ and estimate λ.
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where aξs,t is time-varying space innovation productivity, that quantifies how activity

in the space sector influences technological development over time. The parameter ϵs

determines the diminishing returns of technology to space activity. Finally, Ỹs,t = Ys,t/At

represents the space sector activity detrended by the technology level At, to ensure a

balanced growth path (see Appendix X). Given the above specification, space technology

can be expressed as:

(2.13) Zs,t =
∞∑

k=0

ϕkaξs,t−kξs,t−kYs,t−1−k,

which is a convolution of past space activity and its productivity.

R&D sector

Innovators in the R&D sector generate new technologies that directly increase the stock

of existing technologies in the core sector (Zc,t). Furthermore, technologies in the core

sector gain indirectly from ideas first developed in the space sector, demonstrating the

spillover effect from space sector advancements to the core sector.

In our notation, the stock of existing core sector technologies (Zc,t) depends on the

number of technologies that survive from the previous time period (ϕZc,t−1), the R&D

resources (St−1), and the technological spillover from the space sector to the core sector

(Spillsc,t):

(2.14) Zc,t = ϕZc,t−1 + ξc,t−1St−1 + ξspillsc Spillsc,t,

where ξc,t−1 is the productivity of R&D resources, and ξspillsc is a scaling constant for the

spillover Spillsc,t.
13 The productivity of R&D resources (ξc,t) has the following expression:

(2.16) ξc,t = aξc,tξ̂c

(
At

St

)1−ϵc

= aξc,tξ̂cS̃
ϵc−1
t ,

where aξc,t is the time-varying productivity of R&D resources in producing new tech-

nologies, and ξ̂c is a constant that controls the steady-state growth rate of technologies

and S̃t ≡ St/At represents detrended R&D resources.14 According to Comin and Gertler

(2006), in the numerator of eq. (2.16), the technology level (At) represents intertemporal

13The problem of an individual innovator p is:

(2.15) Zp
c,t = ϕZp

c,t−1 + ξc,t−1S
p
t−1 + ξspillsc Spillpsc,t,

where the p superscripts denote the decision variables of the innovator p. Following Comin and Gertler (2006), the
productivity of R&D resources (ξc,t) is taken as given by the individual innovator p and depends on economy-wide
quantities, so the aggregation of individual R&D efforts in eq. (2.15) is possible.

14In Appendix XI we show how the steady state of the growth rate of technologies depends on ξ̂c. To see that
ξc,t is needed to have a balanced growth path, see Appendix X.
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spillovers in innovation, indicating how previous discoveries enable future advancements.

The R&D expenditure (St) in the denominator reflects diminishing returns in knowledge

creation, meaning that increasing R&D efforts leads to less than proportional gains in

research output. The decreasing returns are consistent with the empirical evidence and

generate a realistic relationship between research effort and growth, see Griliches (1990)

and Jones (1995).

Innovators sell the right to produce a new technology (a blueprint) to intermediate

firms. Under the assumptions of perfect competition in the R&D sector (Comin and

Gertler, 2006), this right is sold at a price equal to the value it generates, denoted by

Jt. This value corresponds to the present discounted profits that the intermediate firm

earns by producing and selling the associated intermediate good to wholesale firms (see

subsection on intermediate firms, eq. 2.6).

The evolution of Jt takes into account the probability that the innovation (i) becomes

adopted and generates profits (with a probability equal to λ and an expected value equal

to Vt+1), (ii) remains among the existing and unadopted technologies (with a probability

equal to 1 − λ and an expected value equal to Jt+1), or (iii) becomes obsolete before

becoming adopted (with a probability of 1− ϕ and a value of zero):15

(2.17) Jt = ϕβΓEt

{
uc,t+1

uc,t
[λVt+1 + (1− λ) Jt+1]

}
.

The value of an adopted innovation (Vt) in eq. (2.17) is given by the discounted summa-

tion of the profits generated by intermediate firms in both the space and the core sector

(Ds,t and Dc,t, see eqs. 2.6), namely:

Vt = ps,tDs,t +Dc,t + ϕβΓEt

(
uc,t+1

uc,t
Vt+1

)
.

The innovators choose the amount of R&D (St) in eq. 2.14 to maximize expected profits.

Under the free-entry condition (Comin and Gertler, 2006), the expected marginal revenue

from a new blueprint equals its marginal cost:

βΓEt

(
uc,t+1

uc,t
Jt+1

)
=

1

ξc,t
.

This zero-profit condition equates the expected discounted value of a new technology

(left-hand side) to its marginal cost, given by the inverse of the marginal product of R&D

(right-hand side).

15The future values are discounted by the stochastic discount factor, namely βΓEt
uc,t+1

uc,t
.
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Spillover dynamics

To capture the flow of knowledge for the space technologies to the core sector, we introduce

the spillover variable Spillsc,t. This variable corresponds to the number of new core-sector

patents in a given quarter that cite earlier innovations from the space sector. We measure

it empirically using the network-based spillover indicator described in Section II. To reflect

the gradual flow of citations across sectors observed in the data, we assume that Spillsc,t
evolves according to an adoption process similar to Equation 2.11. To match the empirical

evidence on citation links, we assume that there is a probability that space technologies

not yet spilled over to the core sector will eventually do so. The law of motion for the

spillover, Spillsc,t, is:

(2.18) Spillsc,t = λspϕ
[
Zs,t−1 − Zspill

c,t−1

]
,

where Zspill
c,t represents the stock of technologies that have spilled over from the space

sector to the core sector, and (Zs,t−1 − Zspill
c,t−1) denotes the pool of technologies in the

space sector that have not yet spilled over to the core sector. As in Equation 2.11, ϕ

denotes the survival rate of technologies from the previous period, ensuring that only

those still in use can generate spillovers. Similarly, λsp is the quarterly probability that

each surviving technology in the pool generates a spillover.

This formulation requires tracking the technologies that have spilled over (Zspill
c,t ) as a

state variable, which evolves according to the following law of motion:

(2.19) Zspill
c,t = ϕZspill

c,t−1 + Spillsc,t.

Combining (2.18) and (2.19), we obtain the following expression for the stock of spillover

technologies:

(2.20) Zspill
c,t = ϕ(1− λsp)Z

spill
c,t−1 + λspϕZs,t−1,

spillover technologies, similarly to space technologies, are a convolution of past space

activity and its past spillovers.

Iterating Equation (2.20) and substituting the expression of existing space technologies

Zs,t in Equation (2.13), we get:

Zspill
c,t =

∞∑

k=0

[ϕ(1− λsp)]
k λspϕ




∞∑

j=0

ϕjξs,t−1−k−jYs,t−2−k−j


 .

This expression shows that the stock of core-sector technologies resulting from spillovers

is a convolution of past space activity and its productivity, with geometrically declining
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weights that depend on the spillover probability λsp. This recursive structure mirrors the

indirect transmission patterns we analyze in the citation network, where technological

influence propagates through chains of citations beyond direct links.16

Aggregation and Equilibrium

The resource constraint for the core sector is given by:

(2.21) ct + ic,t + ps,tis,t + St +AtMc,t + ps,tAtMs,t = Yc,t −Ψt.

Equation (2.21) ensures that the amount of consumption (ct), investment (ic,t and is,t),

R&D resources (St), and intermediate goods (Mc,t and Ms,t) are equal to core sector

production (Yc,t), net of losses due to adjustment costs (Ψt).
17

The exogenous demand requirement in eq. (2.1) and the supply given by the production

function (2.4) enforce equilibrium in the space sector. The model is closed by assuming

that a central bank sets the nominal interest rate according to a simple Taylor rule:18

Rt = Rssπ
rπ
c,t.

where Rss = 1/β represents the steady-state gross interest rate, and rπ denotes the policy

response to consumer price inflation. We define total production in the economy (GDPt)

as the sum of core sector and space sector production:

GDPt = Yc,t + ps,tYs,t.

We also define aggregate investment in the economy as:

it = ic,t + ps,tis,t.

Finally, the evolution of the relative price of the space sector good is linked to the evolution

of the inflation rates in the two sectors:

ps,t
ps,t−1

=
Ps,t/Pc,t

Ps,t−1/Pc,t−1
=

πs,t
πc,t

.

Exogenous Processes

The remaining exogenous processes of the model determine the evolution of the intertem-

poral preference shock (aζ,t), core sector productivity (azc,t), space sector productivity

16Note that in the extreme case where λsp = 0 (no spillover), Zspill
c,t remains at zero for all t. Conversely, if

λsp = 1 (immediate spillover), all space technologies are fully transferred to the core sector with a one-period lag,

yielding Zspill
c,t = ϕZs,t−1.

17The term Ψt collects all the real adjustment costs and their expressions are given in Appendix IX
18In this model without nominal rigidities, the nominal interest rate does not play any role in determining real

quantities.
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(azs,t), labor supply shock (φt), the time-varying space innovation productivity (aξs,t), and

the time-varying productivity of R&D resources in developing new technologies (aξc,t).

They are modeled as AR(1) processes:

log (aζ,t) = ρζ log (aζ,t−1) + εζ,t, log (azc,t) = ρzc log (azc,t−1) + εzc,t,

log (azs,t) = ρzs log (azs,t−1) + εzs,t, log (φt) = ρφ log (φt−1) + εφ,t,

log (aξs,t) = ρξs log (aξs,t−1) + εξs,t, log (aξc,t) = ρξc log (aξc,t−1) + εξc,t,

where ρζ , ρzc , ρzs , ρφ, ρξs , and ρξc are the AR coefficients, and εζ,t, εzc,t, εzs,t, εφ,t, εξs,t,

and εξc,t are Gaussian white noises with standard deviations equal to σζ , σzc , σzs , σφ,

σξs , and σξc , respectively.

IV. Model Solution and Estimation

The model features non-stationary variables due to endogenous growth in technology. In

particular, the number of adopted technologies At follows a stochastic trend and directly

contributes to production by expanding the variety of intermediate inputs used in final

goods (Romer, 1990). As a result, all real variables inherit the same trend, which drives

their long-run dynamics. To ensure a well-defined steady state, we express the model

in terms of deviations from this common trend. This stationary model is reported in

Appendix X and its steady state is derived in Appendix XI.

Macroeconomic series

We estimate the model using six real macroeconomic variables (GDP; aggregate con-

sumption; aggregate investment; hours worked in the core sector; industrial production

index of the space sector; R&D resources), all these variables are measured in growth

rates. The dataset starts in 1960:Q1, capturing the early years of space activity, and ends

in 2015:Q1, the last quarter for which patent data are available. A detailed description of

the data sources and applied transformations is provided in Appendix XII. The following

measurement equations connect the macroeconomic data series (on the left-hand side) to

the model variables (on the right-hand side):

∆GDP data
t = log(G̃DP t)− log(G̃DP t−1) + xt + εGDP

t ,

∆cdatat = log(c̃t)− log(c̃t−1) + xt + εct ,

∆idatat = log(̃it)− log(̃it−1) + xt + εit,

∆ndata
c,t = log(nc,t)− log(nc,t−1) + εnc

t ,

∆Y data
s,t = log(Ỹs,t)− log(Ỹs,t−1) + xt + εYs

t ,

∆Sdata
t = log(S̃t)− log(S̃t−1) + xt + εSt ,

(2.22)
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where εGDP
t , εct , ε

i
t, ε

nc
t , εYs

t , εSt are measurement errors. A tilde indicates the business

cycle components of nonstationary variables, and xt is the stochastic growth rate defined

as log (At/At−1), see Section III.19

Technology series

In addition to macroeconomic series, we estimate the model using two technology se-

ries: the space innovation intensity (F data
s,t ) and the space spillover measure (Rdata

s,t ). These

technology indicators are constructed from patent data, as described in Section II. First,

we denote the model counterpart of F data
s,t as Ft, and define it as the share of new space-

sector technologies relative to the total number of new technologies (space and core).

We define Qs,t = ξs,t−1Ys,t−1 as the number of new space-sector technologies (see Equa-

tion 2.12), and Qc,t = ξc,t−1St−1 + ξ̂spillsc Spillsc,t as the total number of new core-sector

technologies, including spillovers from space technologies (see Equation 2.14). Therefore,

the expression for Ft is:

(2.23) Ft =
Qs,t

Qs,t +Qc,t
.

Second, we denote the model counterpart of the space spillover measure Rdata
s,t as Rs,t,

which represents the relative reliance of core-sector technologies on space-sector spillovers.

We define Cspill,t = ξspillsc Spillsc,t as the number of core-sector patents that build on space-

sector technologies (see Equation 2.14), and Ctotal,t = ξc,t−1St−1+ξspillsc Spillsc,t as the total

number of new core-sector patents. The model-based spillover measure Rs,t is then defined

as:

Rs,t =
Cspill,t

Ctotal,t
.

The following measurement equations connect the technology series to the model variables:

F data
s,t = Fs,t + εFt , Rdata

s,t = Rs,t + εRt ,(2.24)

where εFt , and εRt are errors, that capture the imperfect measurement of technological

variables based on patent data (see Jaffe et al., 1998). Technology variables are in levels,

as they are already measured in percentage terms. They are observed in the same time

span as the macroeconomic series (1960:Q1-2015:Q1).

19The stochastic growth rate xt does not appear in the equation for hours worked, since these are stationary
variables in the model.
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Estimation

The measurement errors εGDP
t , εct , ε

i
t, ε

Ys
t , εSt , ε

F
t , and εRt appering in equations (2.22)

and (2.24) are distributed as Gaussian white noises with standard deviations equal to

σME
GDP , σ

ME
c , σME

i , σME
nc

, σME
Ys

, σME
S , σME

F and σME
R , respectively. The measurement

errors in Equations (2.22) and (2.24) reflect imprecision in data collection and imper-

fect alignment between the model and the observed variables (Herbst and Schorfheide,

2015). Following Borağan Aruoba et al. (2018), we set their standard deviations to 10%

of the corresponding series. To estimate the model, we use the standard Random Walk

Metropolis-Hastings algorithm (RWMH) implemented in Dynare, see Adjemian et al.

(2022). Consistent with standard practice in the DSGE literature (see, e.g., Smets and

Wouters, 2007 and Herbst and Schorfheide, 2015), we calibrate a subset of parameters

based on economic theory, see Table 2.1. The parameters for the capital share in tech-

Table 2.1—: Calibrated parameters. The table reports the calibrated parameter’s name (Full Name), the associated
symbol (Symbol), and the calibrated value (Value).

Full Name Symbol Value Full Name Symbol Value

Capital share Sc αc 0.350 Inverse Frisch el. Ss νs 2.000

Capital share Ss αs 0.350 Steady-state hours Sc nc 1.000

Discount factor β 0.991 Steady-state hours Ss ns × 10 0.056
Obsolescence interm. goods ϕ 0.990 Elast. interm. goods θm 2.670

Depreciation Sc δkc 0.025 Depreciation Ss δks 0.025

Space share χ× 100 0.560 Average growth rate γ × 100 0.450
Inverse Frisch el. Sc νc 2.000 Investment rigidity ηk 10.000

Capacity rigidity Sc ηuc 0.500 Capacity rigidity Ss ηus 0.500

Taylor rule inflation reaction rπ 1.500 Probability of spillover λsp 0.050
Ss techn. over Sc techn. χA × 100 1.360 Spill. techn. over R&D techn. χspill × 100 7.600

nology are set equal to αs = αc = 0.35 to match a labor share of income of 0.65, see

eqs. (2.4) and (2.8). The quarterly intertemporal discount rate (β) in eq. (2.9) is set at

0.991, giving an annual interest rate of 3.60% at the steady state. The quarterly capital

depreciation rates are equal to δkc = δks = 0.025, implying an annual depreciation rate

of 10%. The steady state of the space sector share (gs) in eq. (2.2) equals χ = 0.56/100,

to match the historical average of the sectoral output ratio for the Aerospace Product

and Parts Manufacturing Sector (NAICS 3364) relative to U.S. nominal GDP over the

sample.

In the calibration, we also impose a relative price of the space good (ps) normalized

to 1 at the steady state (see Appendix XI). The average growth rate of the economy

is calibrated to an annual steady-state growth rate of 1.80%, so the quarterly growth

rate is γ = 0.45/100, to match the average growth rate of U.S. real GDP per capita

over the sample period, as in Anzoategui et al. (2019). For the labor disutility curvature

parameters νc and νs we follow the microeconomic evidence and set them at 2.00, which is
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the prior mean value used by Anzoategui et al. (2019). As in Comin and Gertler (2006), we

set θm = 2.67, so the gross markup in the intermediate goods sector is 1.60. In addition,

following Comin and Gertler (2006), we set an annual obsolescence rate of intermediate

technologies equal to 3%, implying a quarterly survival rate ϕ = (1− 0.03)1/4 = 0.99.

We set the parameters governing investment rigidity and capacity utilization to ηk = 10

and ηuc = ηus = 0.50, following Iacoviello and Neri (2010). We fix the quarterly spillover

probability from space technologies to core technologies (λsp) at 0.05, implying an average

spillover lag of 20 quarters (5 years). We define the steady-state ratio of technologies in

the space sector to technologies in the core sector as χA = Zs
Zc

and set it to 1.36%, which

corresponds to the average share of patents in the space sector relative to patents in the

core sector in our sample. Similarly, we define χspill as the steady-state share of new

core-sector technologies that originate from space-sector spillovers (spillover share) and

set it to 7.60%, based on the average value of the empirical spillover measure over the

estimation sample, see Figure 2.1 in Section II.

In the Taylor rule, the response parameter to inflation is rπ = 1.50, see Iacoviello and

Neri (2010). The weights φc and φs in eq. (2.9) are chosen to normalize hours worked in

the core sector to nc = nss
c = 1 and set hours worked in the space sector to ns = nss

s = χ.

This ensures that the steady-state ratio of labor across sectors matches the relative size

of space sector production to core sector production (Ys/Yc). The weights φc and φs

depend on other calibrated values, and their expressions are provided in Appendix XI.

The technological scaling factors (ξ̂s, ξ̂c, and ξspillsc ) are calibrated to ensure consistency

with three steady-state moments: the long-run growth rate of the economy (γ), the

steady-state ratio of space to core technologies (χA), and the spillover share (χspill). The

expressions for these parameters are reported in Appendix XI.

The priors are in line with the DSGE literature, see Smets and Wouters (2007) and

are reported in Table 2.2. For the elasticity of new technologies to R&D (ϵc) and space

activity (ϵs), we use the Beta (B) prior as in Anzoategui et al. (2019), with a mean of 0.60

and a standard deviation of 0.15. For the average adoption lag τ , we specify a Normal

(N ) prior with mean equal to 5.00 (five years adoption lag) and standard deviation of

1.00, as in Anzoategui et al. (2019). For the exogenous processes, we use Inverse-Gamma

(IG) priors for the standard deviations and B priors for the AR coefficients as in Smets

and Wouters (2007). The RWMH chain runs for 1,500,000 iterations and the first half

is discarded as a burn-in period. Convergence is assessed by running multiple chains

and considering the statistics of Brooks and Gelman (1998), provided by Dynare, see

Adjemian et al. (2022).

The last two columns of Table 2.2 report the posterior estimates and standard deviation

of the parameters. We estimate ϵc = 0.16 and ϵs = 0.26, suggesting lower coefficients and

more diminishing returns to R&D and space activity than the prior. We estimate the
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Table 2.2—: Estimation Results. The table reports the parameter’s name (Full Name) with the associated symbol
(Symbol). The table also reports the prior shape (Prior), prior mean and standard deviation (Mean,
St. Dev), and the posterior mean (Post. Mean) and the posterior standard deviation (Post. St. Dev)
for the estimated parameters. The B is the Beta distribution; N is the Normal distribution; IG is
the Inverse-Gamma distribution.

Full Name Symbol Prior
Prior

Mean

Prior

St. Dev

Post.

Mean

Post.

St. Dev

R&D elasticity ϵc B 0.60 0.15 0.16 0.01

Space activity elasticity ϵs B 0.60 0.15 0.26 0.09
Adoption lag τ N 5.00 1.00 7.08 0.92

Persistence space Demand ρs B 0.50 0.10 0.94 0.01
Persistence space innovation productivity ρξs B 0.50 0.10 0.93 0.01

Persistence Prod. Sc ρzc B 0.50 0.10 0.91 0.01

Persistence Prod. Ss ρzs B 0.50 0.10 0.95 0.01
Persistence Lab. Supply ρφ B 0.50 0.10 0.91 0.01

Persistence Preference ρζ B 0.50 0.10 0.99 0.00

Persistence R&D technology ρξc B 0.50 0.10 0.96 0.00
St. Dev. Ss Demand 100× σgs IG 1.00 1.00 3.91 0.19

St. Dev. Ss technology 100× σξs IG 1.00 1.00 9.30 0.42

St. Dev. Prod. Sc 100× σzc IG 1.00 1.00 0.37 0.02
St. Dev. Prod. Ss 100× σzs IG 1.00 1.00 8.22 0.50

St. Dev. Lab. Supply 100× σφ IG 1.00 1.00 2.24 0.13

St. Dev. Preference 100× σζ IG 1.00 1.00 4.17 0.50
St. Dev. Sc technology 100× σξc IG 1.00 1.00 2.87 0.15

average adoption lag τ to 7 years, which is in line with Comin and Gertler (2006). This

gives a quarterly adoption probability of existing technologies (λ = 1
4τ ) of around 3.60%.

We find a high persistence of the space sector share (ρs = 0.94), and of space innovation

productivity (ρξs = 0.93). The other AR parameters (ρzc , ρzs , ρφ, ρζ , and ρξc) also point

to high degrees of persistence.

V. Economic Results

Figure 2.5 shows the smoothed estimate of the space innovation productivity (aξs,t),

using the parameters’ posterior mean. Overall, we can notice persistent fluctuations of

aξs,t, in line with the estimated AR parameter (ρaξs ), see Table 2.2. The vertical lines mark

major missions and key technological achievements in U.S. space history, as descriptive

references for the reader, see NASA (2024). Space innovation productivity begins at a

trend value of approximately 1.40 in the initial decades and exhibits a decline from the

early 1980s, declining to about 0.30 in the last two decades.

Our estimates suggest that space sector activity was considerably more effective at

generating new technologies during the early stages of space exploration than it is today.

The trend in space innovation productivity (aξs,t) reached approximately 1.60 in the

1960s, during the early era of space exploration (e.g., Mercury program — Event 1 and

the Apollo 11 Moon landing - Event 2). It remained relatively high throughout the 1970s,

averaging around 1.4, and was still at 1.3 at the time of the first Space Shuttle launch

(Event 4). From the 1980s, aξs,t entered a prolonged downward trajectory, implying a
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Figure 2.5. : The smoothed dynamics of space innovation productivity (aξs,t, blue dashed line) and its Hodrick-

Prescott filtered trend using λHP = 16000 (HP-filtered, red solid line). The five vertical dash-dotted lines mark
major U.S. space technology and mission milestones: (1) 1961:Q2 – Mercury Redstone 3 (first U.S. human space-
flight); (2) 1969:Q3 - Apollo 11 Moon landing; (3) 1974:Q1 – grant of the original U.S. GPS patent; (4) 1981:Q2
– first Space Shuttle launch (STS-1); (5) 1999:Q4 – launch of NASA’s Terra satellite (Earth Observing System);
(6) 2008:Q3 – Falcon 1 reaches orbit. The star (yellow) and the circle (purple) show the values used for the
simulations in the next subsections, and they represent the highest value of 1960 (aξs,t = 1.72) and the lowest
value (aξs,t = 0.25) of 2011, respectively.

decline in the productivity of space activities in generating new technologies. The most

recent private initiative, SpaceX’s Falcon 1 launch in 2008:Q3 (Event 6), was associated

with a value of approximately 0.25. Following this event, space innovation productivity

continued to decline, reaching its lowest point in the sample, around 0.25 in 2011.

Impulse Responses

Given the parameter estimates in Table 2.2 and the evolution of space innovation pro-

ductivity in Figure 2.5, we now study the generalized impulse response functions (GIRFs)

of key variables to a space sector shock that unexpectedly increases the share of the space

sector (gs,t), and the level of production in the space sector (Ys,t). The GIRFs measure

the impact that an exogenous increase in space sector activity (e.g., the launch of a new

satellite program) has on the discovery of new technologies and GDP.

Specifically, the GIRFs are calculated by comparing the evolution of key variables in

the case where the share of the space sector (gs,t) receives an impulse from its shock (εs,t)

to the case where it does not.

Figure 2.6 shows the estimated GIRFs in two scenarios: the first one is associated

with the higher space innovation productivity of 1960:Q2 (aξs,t = 1.72, red dashed line),

while the second is associated with the lower space innovation productivity of 2011:Q1

(aξs,t = 0.25, blue solid line). The GIRFs are computed using a second-order solution of
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the model.20 Our analysis considers a space sector shock (εs,t) that hits the economy with

the same size (a one percent increase in detrended space activity Ỹs,t) in both scenarios.

The first panel of Figure 2.6 shows that this shock increases the space sector share (gs,t), as

described in eq. (2.2). The exogenous increase in the space sector share is identical in both

high and low space innovation productivity cases, raising the share by approximately 0.55

basis points above its steady-state level. Since the steady-state share is 0.56% (gs = χ),

this shock corresponds to roughly a 1% increase relative to steady-state. The middle-

left panel shows that after the shock, increased production in the space sector generates

new space technologies (Zs,t), as implied by equation (2.12). The plot indicates that

these technological effects are significantly more pronounced under high space innovation

productivity. Under this scenario, Zs,t peaks at around 5 basis points after 30 quarters,

whereas in the low space innovation productivity scenario, it reaches 3 basis points.

We observe similar differences in the response of core sector technologies, which increase

due to the space sector spillover described in equation (2.14). Under the high space

innovation productivity scenario, Zc,t peaks at approximately 0.12 basis points above

the steady state, whereas under the low space innovation productivity scenario, it is at

0.05 basis points. Similarly, the aggregate stock of existing technologies (Zt = Zs,t +

Zc,t) peaks at 0.18 and 0.09 basis points for high and low space innovation productivity

scenarios, respectively. The relatively small responses of the technological variables reflect

the modest size of the simulated shock, a 1% increase in space sector activity used as a

benchmark. For reference, a shock large enough to raise the space sector’s share to its

historical peak (0.80% in 1967:Q2) would be approximately 43 times larger.21 Assuming

the response scales proportionally with the size of the shock, this historical peak-level

shock would translate into an increase in existing technologies (Zt) of about 7.90 basis

points under the high-productivity scenario, and about 4.00 basis points under the low-

productivity scenario.

Trend and Business Cycle Effects of Space Activity

To disentangle the impact of a space sector shock on technology and economic growth,

we examine its joint effect on the trend and business cycle components of GDP. Figure

2.7 presents the GIRFs of adopted technologies in the production processes (At) and the

stationary component of GDP (G̃DP t), which together determine the overall response of

nonstationary GDP (GDP = AtG̃DP t).

As shown in Figure 2.6, we examine a space sector shock which results in a 1% increase

20To compute the GIRFs (Koop et al., 1996), we simulate positive and negative shocks to εξs,t that raise or
lower the value of space innovation productivity from its steady-state level of aξs,t = 1, to the highest value of
aξs,t = 1.72 and lowest value equal of aξs,t = 0.25. The GIRFs are computed using a second-order perturbation
with Dynare, see Adjemian et al. (2022), and are averaged over 100 iterations and make use of a pruned solution
to the model, to rule out possible explosive paths generated by the nonlinear solution, see Andreasen et al. (2018).

21This larger shock would raise the space sector share by 23.9 basis points above its steady-state value of 0.56%,
compared to just 0.55 basis points in the smaller shock shown in Figure 2.6.
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Figure 2.6. : The GIRFs of stationary variables to a positive space sector shock. The GIRFs are associated with
higher space innovation productivity of the beginning of the sample (aξs,t = 1.72, red dashed line) and lower
space innovation productivity of the recent years (aξs,t = 0.25, blue solid line). The upper left panel reports
the response of the space sector share (gs,t) in deviations from the steady state (namely, gs,t − χ), expressed in
basis points (∆bp); the upper right panel reports the response of space sector production (Ys,t) expressed in basis
points deviations (∆bp) from the steady state; the middle left panel reports the response of productivity space

sector technologies (Z̃s,t) in basis points deviations (∆bp) from the steady state; the middle right panel reports

the response of core sector technologies (Z̃c,t) in basis points deviations (∆bp) from the steady state; the lower

left panel reports the response of existing technologies (Z̃t) in basis points deviations (∆bp) from the steady state;

and the lower right panel reports response of GDP (G̃DP t) in basis points deviations (∆bp) from the steady state.
Horizontal axes report the quarters.

in space sector production (Ỹs,t). The top panel displays how adopted technologies (At)

react under varying levels of space innovation productivity. In the high space innovation

productivity scenario of 1960, At responds more robustly, reaching roughly 0.51 basis

points, while in the low space innovation productivity scenario of 2011, the response is

weaker, at about 0.27 basis points. The response of At emerges only in the long run,

starting from zero and exhibiting a permanent effect. The lower panel of the figure shows

the response of the business cycle component (G̃DP t) following a space sector shock. On

impact, G̃DP t increases by approximately 2.35 basis points before gradually reverting to

its steady-state level. The initial rise is mechanically driven by the expansion in space

sector production and the corresponding increase in aggregate income. The response of

G̃DP t is nearly identical in the high and low space innovation productivity scenarios.

This distinction highlights the fundamental difference between the persistent effects of

technological shocks and the transitory nature of business cycle fluctuations.

Figure 2.8 shows the overall response of GDP (blue solid line), which results from the

combined effects of the business cycle component (G̃DP t) and the technology level (At)
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Figure 2.7. : The GIRFs of GDP to a positive space sector shock, distinguishing between trend and business cycle
components. The GIRFs are associated with higher space innovation productivity of the beginning of the sample
(aξs,t = 1.72, red dashed line) and lower space innovation productivity of the recent years (aξs,t = 0.25, blue
solid line). The upper panel reports the response of the technological component of GDP (At) expressed in basis
points deviations (∆bp) from its trajectory without the space sector shock; the lower panel reports the response

of the business cycle component of GDP , namely ˜GDP t in basis points deviations (∆bp) from the steady state.
Horizontal axes report the quarters.

following a space sector shock of the same magnitude as in Figure 2.7. This shock is

associated with the high space innovation productivity scenario of 1960 (aξs,t = 1.72).

The initial response of GDP is entirely driven by the business cycle component; in the

long run, it converges to the technological component, as technological improvements are

the only persistent effects of the shock.

To assess the economic significance of the results, we analyze the spending multipliers

associated with space activity. At each time period i after the shock, we compute (a)

the response of GDP (GDPt+i, shown in Figures 2.7 and 2.8), (b) the response of space

expenditure (ps,t+iYs,t+i), and (c) the response of the interest rate (Rt+i). We then

compare the economic gains (the discounted cumulative increase in GDP) against the

economic costs (the discounted cumulative increase in space expenditure), over any given

time horizon h. Following Mountford and Uhlig (2009) and Zubairy (2014), the cumulative

space spending multiplier Ms,h is given by:

(2.25) Ms,h =
Et
∑h

i=0∆
(

1
Rt|t+i

)
GDPt+i

Et
∑h

i=0∆
(

1
Rt|t+i

)
(ps,t+iYs,t+i)

.
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Figure 2.8. : The GIRFs of GDP to a positive space sector shock. All the GIRFs in this plot are associated with
higher space innovation productivity of the beginning of the sample (aξs,t = 1.72). The GIRFs are expressed in
percentage deviations with respect to the case where no shock realizes. The horizontal axis reports the quarters.

In eq. (2.25), 1/Rt|t+i represents the discount factor for future gains and expenses, oc-

curring i periods ahead in the future.22

Table 2.3 reports the cumulative space spending multipliers at different horizons: 20,

100, 200, and 400 quarters.23 The table presents two versions of the multipliers: one where

discounting of future gains is applied, based on the equilibrium interest rate (as shown in

Equation 2.25), and one where the discount factor is set to unity (1/Rt|t+i = 1 for all i).

This distinction is important because the technological effects unfold over the long run,

where discounting can significantly alter the estimated impact, see Ramey (2020). By

considering these two cases, market-based discounting and no discounting, we provide a

useful range for interpreting long-run multipliers in the spirit of Millner and Heal (2023).

Table 2.3—: Cumulative space spending multipliers at different time horizons. Values without parentheses corre-
spond to the high space innovation productivity at the beginning of the sample (aξs,t = 1.72), while
values in parentheses indicate the lower space innovation productivity of recent years (aξs,t = 0.25).
The table reports discounted (Disc) and non-discounted (Not Disc) multipliers over 20-, 100-, 200-,
and 400-quarter horizons.

20q 100q 200q 400q

Disc 1.1 (1.1) 1.4 (1.3) 1.8 (1.4) 2.2 (1.6)
Not Disc 1.1 (1.1) 1.5 (1.3) 2.4 (1.8) 6.0 (3.7)

22The discount factor is given by the product of risk-free gross policy rates from t to t+ i:

Rt|t+i =
i∏

j=0

Rt+j .

Analyzing whether the multipliers may vary depending on different discount factors (Rt|t+i) between public or
private space customers is left for future research.

23The reason for using this very long horizon (400 quarters, or 100 years) is to show the theoretical effect of
slow-moving technological spillovers, consistent with the nearly century-long span of our patent data from 1920 to
2015.
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Table 2.3 highlights the dynamic effects of space sector spending on GDP across different

time horizons. In the medium run (20 quarters), the multipliers are slightly above one and

are similar across the high and low space innovation productivity cases, suggesting that

short-term effects are mainly driven by business cycle fluctuations. Over the long term

(100 quarters) and especially in the very long run (200 and 400 quarters), the divergence

between the scenarios increases significantly. In the high space productivity scenario,

multipliers are significantly higher than in the low productivity case, showing that in

the long run, technological advancements from space investment drive GDP growth. At

the 400-quarter horizon, the high non-discounted multiplier is 6.0, nearly three times

larger than the corresponding discounted value (2.2). These results show how discounting

significantly affects the assessment of returns from space investments. Since the economic

effects of space activity emerge gradually over time, the way future gains are discounted

plays a crucial role in determining their perceived value today. Moreover, these findings

highlight the importance of the technological impacts from space activities, as the larger

economic benefits of space spending emerge primarily through sustained innovation and

diffusion over the long run, rather than from short-term demand effects.

Sectoral Spillovers

We use our model to analyze the sector-specific spillovers discussed in Section II. In

particular, we conduct a counterfactual analysis that isolates the effects of spillovers from

space technologies in each of the four key technological sectors shown in Figure 2.3.

We compute the response of the nonstationary technological component of GDP, At,

assuming that the spillover from space operates through only one sector at a time. To do

so, we calibrate the sector-specific spillover shares (χspill) to match the observed sectoral

spillover series in Figure 2.3, instead of the aggregate measure for the core sector (bottom

panel of Figure 2.1). We fix space innovation productivity (aξs,t = 1) to keep the number

of new space technologies constant across simulations, isolating only differences in their

diffusion to other sectors. χspill are set to match the empirical values in Figure 2.3 at

two points in time: 1960 and 2011. These years are selected to represent, respectively,

the pioneering phase of space activity and the more recent period marked by lower space

innovation productivity.

We report the GIRFs of nonstationary GDP in Figure 2.9, following a one-percent

increase in activity of the space sector (Ys,t). The results reveal heterogeneous dynamics

across sectors and over time. In the case of the Computer and Peripheral Equipment

sector (top-left panel), the impact on GDP is substantially higher in 2011 than in 1960,

reflecting the sector’s growing importance as a recipient of space-related innovation. A

similar pattern is observed for the Communication Equipment sector (top-right panel). By

contrast, the Navigation, Measurement, Electromedical, and Control Instruments sector
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(bottom-left panel) exhibits a more stable contribution over time, with nearly identical

GDP responses in both periods, mirroring the relatively constant spillover measure shown

in Figure 2.1. Finally, the Electrical Equipment sector (bottom-right panel) displays a

declining influence, with a weaker GDP response in 2011 than in 1960, in line with the

diminishing spillover measure from space technologies in the data. These findings show

the evolving and uneven transmission of space-sector innovation to the broader economy.

By isolating each sector’s role in turn, the counterfactuals provide a clearer picture of

how specific technological channels have mediated the macroeconomic impact of space

activities across different historical periods.
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Figure 2.9. : The panels show the response of the nonstationary technological component of GDPt (At), mea-
sured in basis points deviations (∆bp) from its no-shock trajectory, after a one-percent increase in
space sector activity (Ys,t). Each panel focuses on a specific spillover channel (Computer, Commu-
nication, Navigation, and Electrical) and compares responses using spillover shares (χspill) equal to

the spillover measures Rdata
s,t observed in 1960 (blue solid line) and 2011 (red dashed line). Space

innovation productivity is held constant at its steady-state value (aξs,t = 1) to isolate the role of
sector-specific spillover transmission. The responses are computed from a second-order approxima-
tion of the model with pruning. The horizontal axis denotes quarters.
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VI. Conclusion

The renaissance of space exploration that we are witnessing is paving the way for a

number of potential technological developments that may produce significant economic

spillovers. This paper addresses this evidence by building and estimating a two-sector gen-

eral equilibrium growth model with a space sector, using a novel dataset on U.S. patents.

To analyze technological dependencies among patents, we construct a citation network

and use network-based metrics to capture both direct and indirect linkages. Relative to

earlier work, our model features a richer technology block, where technological progress

can stem from generic R&D or space innovation, and where spillovers from space to the

core sector are modeled explicitly. Our results can be summarized as follows. Space

activities lead to positive spillovers to the broader economy, boosting productivity and

long-term growth. These spillovers are larger in the earlier stages of aerospace activity

(1960s) compared to today (2010s), due to lower innovation productivity of space activity.

We find that the economic effects of space activity give the highest returns in the long

term, since business cycle effects are temporary and associated with lower multipliers.

Whilst the overall technology generated in the aggregate U.S. economy by space activity

has reduced over the decades, the effects on specific sectors show distinct patterns. Focus-

ing on sectors like Computer and Peripheral Equipment and Communication Equipment,

we show that the spillover from space has increased over time.

As space activities expand and data availability improves, both granular and aggregate

approaches can be used to explore the economic implications of specific space-related

initiatives. Future research could leverage the granularity of patent data to isolate the

spillovers generated by specific activities within the space sector, such as satellite de-

velopment, launch services, or space science missions. Distinguishing between public

and private contributions (e.g., NASA vs. commercial firms) would allow researchers to

investigate incentive structures, coordination issues, and potential inefficiencies in the al-

location of resources. This line of research could also shed light on negative externalities

and policy trade-offs, particularly as competition intensifies and property rights remain

underdeveloped. Embedding these features into macroeconomic models, possibly through

richer input-output networks (as McNerney et al., 2022 and Highfill and MacDonald, 2022)

would offer a more comprehensive view of how space technologies propagate through the

economy and how their benefits and risks are distributed.
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34 TECHNOLOGY SPILLOVERS FROM THE FINAL FRONTIER

J., Ratto, M., Rion, N., and Villemot, S. (2022). Dynare: Reference Manual Version 5.

Dynare Working Papers 72, CEPREMAP.

Aghion, P. and Howitt, P. (1992). A Model of Growth Through Creative Destruction.

Econometrica, 60:323–351.

Andreasen, M. M., Fernández-Villaverde, J., and Rubio-Ramı́rez, J. F. (2018). The

Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Ap-

plications. The Review of Economic Studies, 85:1–49.

Annicchiarico, B. and Pelloni, A. (2021). Innovation, Growth, and Optimal Monetary

Policy. Macroeconomic Dynamics, 25:1175–1198.

Anzoategui, D., Comin, D., Gertler, M., and Martinez, J. (2019). Endogenous Technology

Adoption and R&D as Sources of Business Cycle Persistence. American Economic

Journal: Macroeconomics, 11:67–110.

Beldavs, V. and Sommers, J. (2018). The Emerging Field of Space Economics: Theoretical

and Practical Considerations. https://www.thespacereview.com/article/3393/1.

Berkes, E. (2018). Comprehensive universe of u.s. patents (cusp): Data and facts. Un-

published, Ohio State University.

Bianchi, F., Kung, H., and Morales, G. (2019). Growth, Slowdowns, and Recoveries.

Journal of Monetary Economics, 101:47–63.
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VII. Patent data description

This appendix describes the data sources, transformations, and methodology used to

construct the patent and citation datasets employed in the analysis.

The patent data come from the Comprehensive Universe of U.S. Patents (CUSP)

database provided by Berkes (2018), which compiles historical records of patents issued

by the United States Patent and Trademark Office (USPTO) from 1836 to 2015. For

this study, we use the subset of data available from 1920 to 2015, aligning with the fo-

cus of our analysis on the aerospace sector. The dataset integrates multiple sources,

including USPTO records, digitized historical archives, Optical Character Recognition

(OCR)-processed documents, and Google Patents. It provides detailed information on

patent grants, technological classifications, and backward citations, allowing for a com-

prehensive examination of innovation patterns over time. The dataset includes a total of

7,584,773 patents from 1920 onward.

Each patent in the dataset is classified using the U.S. Patent Classification (USPC)

system, which can assign multiple technology classes to a single patent. Among these,

one main class is designated to capture the core inventive concept of the patent. To

map patents to economic sectors, we merge the U.S. Patent Classification (USPC) system

with the North American Industry Classification System (NAICS) using the 2014 USPTO-

NAICS concordance table provided by the U.S. Patent and Trademark Office (USPTO).24

This concordance table links each USPC class and subclass to one or more NAICS sectors

based on technological relevance. Since some USPC classes correspond to multiple NAICS

sectors, we retain all valid associations in our dataset to fully account for the potential

economic domains influenced by a given patent. This approach ensures that patents

classified under multiple applicable industries contribute proportionally across all linked

NAICS sectors. To measure the extent to which a patent belongs to the space sector, we

compute a fractional weight for each patent based on its technological classification. Let p

denote a patent, and let Tp be the set of technology classes assigned to p, with cardinality

|Tp|. For each technology class T ∈ Tp, let ws(T ) denote the share of T that maps to the

space sector s. The fractional assignment of patent p to the space sector is then given by:

αs(p) =
1

|Tp|
∑

T∈Tp

ws(T ).

The total number of space sector patents at time t is computed by summing over all

patents granted in the period t. Let Pt be the set of patents granted in quarter t, then

24Available at https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/naics_conc/2014/.

https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/naics_conc/2014/
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the total weighted count of space patents is:

Qdata
s,t =

∑

p∈Pt

αs(p).

To construct a relative measure of new space technologies in a given quarter, we compute

the ratio of space sector patents to total patents (space plus core sector). The number of

core sector patents at time t is denoted as:

Qdata
c,t =

∑

p∈Pt

αc(p),

where αc(p) = 1− αs(p) is the fraction of patent p assigned to the core sector.

The final ratio of space sector patents to core sector patents (space innovation intensity),

which serves as our main measure of space technological activity, is then given by:

F data
t =

Qdata
s,t

Qdata
s,t +Qdata

c,t

.

This measure, plotted in Figure 2.1 in the main text, represents the flow of new space

technologies relative to core technologies in each period and is the empirical counterpart

of the model variable Ft defined in Eq. (2.23). Patent data are dated using the grant

date (year, month, and day), and observations are aggregated at the quarterly frequency

to ensure comparability with macroeconomic data. The series in Figure 2.1 in the main

text shows that the share of space-related technologies peaked in 1960 at approximately

2.8%, followed by a long-term decline, reaching its lowest value of 0.80% in 1999.

Secondly, we study technological spillovers through patent citations, where a citation

indicates that the citing patent builds on the technological content of the cited one.

Citation data are obtained from the cit given from 1920.csv file of the CUSP database,

which records citation relationships between patents. The data are filtered to retain only

citations between patents included in our dataset to ensure consistency.25

To quantify spillovers, we define the set of citations made by patent p as C(p). Each

cited patent q ∈ C(p) has a space sector weight αs(q). We define the subset of citations

that reference at least one space sector patent as:

Cs(p) = {q ∈ C(p) | αs(q) > 0}.

We define a dummy variable ds,p that indicates whether patent p cites at least one space

25The percentage of retained patents is 99.08%.
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sector patent:

ds,p =




1, if |Cs(p)|> 0

0, otherwise.

Focusing on the core sector, we weight each patent by its degree of core-sector relevance

αc(p), and define the naive space to core spillover measure as:

Rnaive
s,t =

∑
p∈Pt

αc(p) · ds,p∑
p∈Pt

αc(p)
.

This expression computes the share of core-sector patents that cite at least one space-

sector patent, using sectoral weights and is plotted in the lower panel of Figure 2.1 in the

main text. While this measure captures direct citation links, it does not account for the

broader network of indirect technological dependencies. To address this, the next section

introduces a centrality-based approach that incorporates the full structure of the citation

network.

VIII. PageRank algorithm

This appendix describes the methodology used to compute spillovers from the space

sector to the core sector using a PageRank-based algorithm applied to the patent cita-

tion network. Unlike the simpler dummy-based method, this approach captures the full

structure of direct and indirect linkages across the network.

To capture technological dependency, rather than influence, we use the Reverse PageR-

ank variant, which ranks patents based on the citations they make instead of those they

receive. In this setting, each patent i is assigned a dependency score PRi, which is higher

when the patents it cites j also have high scores PRj . This reflects the idea that a patent

is more dependent when it builds upon prior work that itself relies heavily on earlier

innovations. The recursive structure of the algorithm allows it to incorporate indirect

pathways of technological transmission.

To implement the algorithm, we define the citation matrix A, where each element

indicates whether patent i cites patent j:

Aij =




1, if patent i cites patent j,

0, otherwise.

Based on this matrix, Reverse PageRank computes the dependency score of each patent

i (PRi) iteratively, using the following equation:

(A2.1) PRi = (1− d)vi + d
∑

j:Aij=1

PRj

Cj
,



CORRADO, GRASSI AND PAOLILLO 41

where d is the damping factor, which controls how much weight is given to the network

structure; v is the teleportation vector (Brin and Page, 1998), which assigns baseline

weights across patents, with vi denoting its ith element; and Cj is the in-degree of patent

j, representing the total number of citations it receives.

The first term in Eq. (A2.1), which includes the teleportation vector, assigns a baseline

level of dependency to each patent independently of the citation network. This ensures

that all patents receive some initial dependency score, preventing the measure from being

entirely driven by citation links alone and improving numerical stability. The second term

captures the recursive component of the algorithm, summing the dependency scores of

all patents cited by i, with each contribution inversely weighted by the number of other

patents that cite them (Cj). This means that if a cited patent j is only referenced by i

(Cj = 1), its full score PRj is transferred to i. Conversely, if j is widely cited (Cj > 1),

its influence is diluted and distributed across all citing patents.

The algorithm is parameterized by several tuning parameters. The damping factor d

determines the relative weight given to the teleportation and network part. Lower values

of d reduce the influence of network links, while higher values increase it.26 We calibrate

the damping factor to d = 0.50, the standard choice in the literature on technological

diffusion (see Chen et al., 2007, Mariani et al., 2019). This value balances the influence of

the citation network with baseline scores from the teleportation vector.27 The PR scores

are computed by starting from an initial distribution and repeatedly updating them based

on the scores of connected nodes, until the values converge. The algorithm iterates until

the difference between two consecutive iterations falls below a convergence tolerance tol,

which we set to 10−6 to ensure numerical stability; we cap the number of iterations at

max iter = 1000, although convergence is typically achieved in less than 40 iterations.

To quantify the relative importance of citations to space-sector patents versus generic

patents, the algorithm employs two different initializations for teleportation. The first

captures the dependency on space sector patents and uses a teleportation vector v based

on the naive spillover definition: each patent receives a weight of 1 if it cites at least one

space-sector patent, and 0 otherwise.28 This is defined as:

(A2.2) vi =




1, if patent i cites a space-sector patent,

0, otherwise.

26Technically, Brin and Page (1998) show that the damping factor d controls the probability that a random
walker on the network follows an existing link between nodes rather than ‘teleporting’ to a random node. A higher
d thus places greater weight on the network’s linkage structure.

27This value is lower than the original damping factor used for web pages by Brin and Page (1998), who set
d = 0.85. Scientific citation networks tend to exhibit shorter path lengths on average than the web graph, motivating
a lower value of d, see Chen et al. (2007).

28Additionally, the teleportation term can be modified to analyze reliance on specific technologies or individual
patents. In this case, we assign vi = 1 only for patents within a targeted technological category or for a single
patent of interest, while setting vi = 0 elsewhere. This approach allows us to isolate the propagation of influence
from a particular technology or innovation throughout the citation network, see the next subsection.
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The second initialization captures the dependency on generic patents and uses a uniform

teleportation scheme, where all patents receive the same teleport weight regardless of

citations. This is defined as:

(A2.3) vi = 1, ∀i.

The spillover measure is obtained by taking the ratio of the Reverse PageRank scores

computed using the naive teleportation (A2.2) and the uniform teleportation (A2.3):

Si =
PRnaive

i

PRuniform
i

.

This ratio measures the extent to which each patent depends on space-sector knowledge

relative to generic knowledge. By aggregating over all patents belonging to the core sector

in each quarter t, the network spillover measure —presented in Figure 2.1 of the main

text— is obtained. Formally, it is computed as:

Rdata
s,t =

1

|Pt|
∑

i∈Pt

αc(i)Si.

where as before |Pt| is the number of patents granted at time t and αc(i) is the fraction

of patent i assigned to the core sector. When the damping factor is set to zero (d = 0),

the PageRank scores reduce to the teleportation terms, ignoring the network structure.

In this case, under naive initialization (A2.2), the teleportation term becomes a dummy

for whether a patent cites a space-sector patent; under uniform initialization (A2.3), all

patents receive equal weight. As a result, the spillover measure (Rdata
s,t ) simplifies to the

naive measure (Rnaive
s,t ), which captures only direct citations. The network spillover series

(Rdata
s,t ), plotted in the lower panel of Figure 2.1, captures the evolution of technological

reliance on space patents over time. The series shows that the overall dependency of

core-sector patents on space-sector patents peaked in the 1960s at 9.6%, reflecting the

high diffusion of space technology innovations. A gradual decline in spillover intensity

is observed over subsequent decades, reaching its lowest value of 6.15% in 2010. These

spillover measures are incorporated into the endogenous growth model in the main text,

linking space-sector technological diffusion to macroeconomic outcomes.

A granular example: the solar power patent

To demonstrate the effectiveness of our citation network approach, we analyze the

technological diffusion of the solar power patent already shown in the main text in Section

II. The solar power plant patent U.S. Patent 3,781,647 was granted on December 25, 1973.

This invention describes a system for collecting solar radiation in outer space, converting
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it into microwave energy, and transmitting it back to Earth for conversion into electrical

power. Over time, the underlying concept has inspired innovations in wireless power

transmission, satellite-based energy systems, and renewable energy technologies, with

applications in both terrestrial and space-based infrastructure. Figure 2.2 in the main text

displays the directed network of patents that directly cite the solar energy patent, along

with those that cite its immediate successors. The figure reveals the presence of successor

patents across the Communication, Navigation, and Electrical sectors, highlighting the

diverse technological footprint of the original solar power innovation. Building on this

evidence, we apply our Reverse PageRank methodology to track how patents in different

sectors have relied on the technology of this patent over time. Similar to our analysis

of space-sector patents, we now compute dependency scores using a teleport term that

reflects the direct successors of the original solar power plant patent only. Figure A2.1

illustrates the evolution of sectoral dependency scores (Rdata
sol,t), capturing the extent to

which key sectors rely on the solar power patent over time. Spillover effects from the

Figure A2.1. : Sectoral dependency scores on the solar power patent (Rdata
sol,t), computed using the Reverse PageR-

ank methodology. The measure captures the reliance of patents in key economic sectors on GPS
over time. Rdata

sol,t is computed quarterly based on patent grant dates. Sectors include: (i) Com-

munication Equipment (NAICS 3342), (ii) Navigation, Measurement, Electromedical, and Control
Instruments (NAICS 3345), (iii) Electrical Equipment, Appliances, and Components (NAICS 335),
and (iv) Other sectors.

solar energy patent are visible across the Communication Equipment and Navigation-

related sectors, reflecting its downstream relevance in space-based power systems and

control technologies. The Navigation sector, in particular, shows sustained reliance into

the 2000s and 2010s. Electrical Equipment and Other sectors also display diffusion,

though with distinct sectoral patterns. As expected, dependency scores are correctly zero

prior to the patent’s introduction, since only subsequent inventions can cite it.



44 TECHNOLOGY SPILLOVERS FROM THE FINAL FRONTIER

This case study highlights the broader capacity of our citation-based approach, com-

bined with granular patent data, to trace the cascading effects of innovations across sectors

and over time. Our methodology is flexible and can be applied to analyze spillovers from

various aggregates of patents, bridging the gap between the sector-wide analysis presented

in the main text and the single-patent case explored in this appendix. Future research

could leverage this approach to examine the diffusion of technologies originating from

specific institutional sources (e.g., NASA-funded patents or private sector innovations) or

from particular technological domains within the space sector. These extensions would

further enrich our understanding of how space-related advancements influence the broader

economy.

IX. The Model Equations

Wholesale Space Firms

The optimal factor demand schedules derived from the maximization problem of whole-

sale space sector firms are the following:

• Labor demand by Ss:

(1− αs)vYs,t = ws,tns,t.

• Capital demand by Ss:

αsvYs,t = rks,tuks,tks,t−1.

• Intermediate input demand by Ss:

(A2.4) (1− v)Ys,t

(
1

Gs,t

) θm−1
θm

(
1

M j
s,t

) 1
θm

=
Pm,j
s,t

Ps,t
.

Combining the intermediate inputs demand (eq. A2.4) with the supply (eq. 2.7) and

imposing a symmetric equilibrium (M j
s,t = Ms,t), we obtain an expression for the quantity

of each intermediate good:

Ms,t =

[
(1− v)

azs,t
pms,t

] 1
v

A
1−vθm
v(θm−1)

t n1−αs
s,t (uks,tks,t−1)

αs .
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After some algebra, this also allows us to rewrite the production function (2.4) as a

function of the labor and capital inputs only:

Ys,t =
(
azs,t

) 1
v

[
(1− v)

1

pms,t

] 1−v
v

n1−αs
s,t (uks,tks,t−1)

αs A
1−v

v(θm−1)

t .

Wholesale Core Firms

The problem of wholesale core firms mirrors the one regarding the space sector shown in

eq. (2.3):

max
nc,t,kc,t,M

j
c,t

Yc,t − wc,tnc,t − rc,tukc,tkc,t−1 −
∫ At

0

Pm,j
c,t

Pc,t
M j

c,tdj,

subject to the production technology

Yc,t = azc,t

[
(nc,t)

1−αc (ukc,tkc,t−1)
αc

]v
[Gc,t]

1−v ,

where Gc,t is a CES aggregator of intermediate inputs:

Gc,t =

(∫ At

0

(
M j

c,t

) θm−1
θm

) θm
θm−1

.

The variable azc,t represents technology in the core sector, and the variable ukc,t capacity

utilization of the capital stock used for core sector production. Similarly to the space

sector side, the optimal factor demand schedules are then:

• Labor demand by Sc:

(1− αc)vYc,t = wc,tnc,t,

• Capital demand by Sc:

αcvYc,t = rkc,tukc,tkc,t−1,

• Intermediate input demand by Sc:

(A2.5) (1− v)Yc,t

(
1

Gc,t

) θm−1
θm

(
1

M j
c,t

) 1
θm

=
Pm,j
c,t

Pc,t
.

The supply of intermediate core goods is delegated to monopolistic competitive inter-

mediate core sector firms. Intermediate core sector firms transform one unit of the final
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good into one unit of the intermediate good. Each intermediate firm maximizes its profits,

which are equal to:

Dj
c,t =

(
Pm,j
c,t − Pc,t

)

Pc,t
M j

c,t,

subject to the demand from the wholesalers in the core sector (eq. A2.5). The solu-

tion (in a symmetric equilibrium) to the above problem pins down the relative price of

intermediate core goods:

Pm
c,t

Pc,t
≡ pmc,t =

θm
θm − 1

.

As for the space sector problem, it is possible to write the equilibrium quantity of the

intermediate core sector good,

Mc,t =

[
(1− v)

azc,t
pmc,t

] 1
v

A
1−vθm
v(θm−1)

t n1−αc
c,t (ukc,tkc,t−1)

αc ,

and to plug it into the final good production function:

Yc,t =
(
azc,t

) 1
v

[
(1− v)

1

pmc,t

] 1−v
v

n1−αc
c,t (ukc,tkc,t−1)

αc A
1−v

v(θm−1)

t .

Households

The functional forms of the investment and capacity utilization costs appearing in the

households’ budget constraint (eq. 2.10) are the following:

Ψkc,t =
ηk
2

(
kc,t
kc,t−1

− Γ

)2

kc,t−1,

Ψks,t =
ηk
2

(
ks,t
ks,t−1

− Γ

)2

ks,t−1,

Ψuc,t =

[
1

β
− (1− δkc)

] [ ηuc
1−ηuc

2
+

ηuc
1−ηuc

2
u2kc,t +

(
1− ηuc

1− ηuc

)
ukc,t − 1

]
,
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Ψus,t =

[
1

β
− (1− δks)

][ ηus
1−ηus

2
+

ηus
1−ηus

2
u2ks,t +

(
1− ηus

1− ηus

)
uks,t − 1

]
.

The term Ψt in the budget constraint of households (eq. 2.10) is given by:

Ψt = Ψkc,t + ps,tΨks,t +Ψuc,tkc,t−1 + ps,tΨus,tks,t−1.

Finally, in the budget constraint the term Dt sums the profits of intermediate firms in

the two sectors:

Dt = Dc,t + ps,tDs,t.

The households’ optimization leads then to the following first-order conditions:

• Euler equation:

uc,t = βΓRtEt
uc,t+1

πc,t+1
.

• Labor supply to Sc:

aζ,tφtφ
cnνc

c,t = wc,tuc,t.

• Labor supply to Ss:

aζ,tφtφ
snνs

s,t = ps,tws,tuc,t.

• Capital supply to Sc:

uc,t

[
1 + ηk

(
kc,t
kc,t−1

− Γ

)]

= βΓEtuc,t+1

[
1− δkc + rkc,t+1ukc,t+1 −Ψuc,t+1 +

ηk
2

(
kc,t+1

2

kc,t
2 − Γ2

)]
.

• Capital supply to Ss:

ps,tuc,t

[
1 + ηk

(
ks,t
ks,t−1

− Γ

)]

= βΓEtps,t+1uc,t+1

[
1− δks + rks,t+1uks,t+1 −Ψus,t+1 +

ηk
2

(
ks,t+1

2

ks,t
2 − Γ2

)]
.
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• Capacity utilization in Sc condition:

rkc,t
1
β − (1− δkc)

= 1− ηuc

1− ηuc

+
ηuc

1− ηuc

ukc,t.

• Capacity utilization in Ss condition:

rks,t
1
β − (1− δks)

= 1− ηus

1− ηus

+
ηus

1− ηus

uks,t.

The marginal utility of consumption above (uc,t) is defined as follows:

uc,t =
aζ,t
ct

.

X. Stationarizing the Model

As stated in the main text, the model incorporates stochastic growth (xt) in the number

of existing technologies across the space sector (Zs,t), the core sector (Zc,t), the aggregate

economy (Zt), and the set of adopted technologies (At). The following variables reflect the

resulting stochastic trend and are proportional to At along the balanced growth path: core

sector production (Yc,t); space sector production (Ys,t); consumption (ct); the inverse of

the marginal utility of consumption (1/uct); core capital (kc,t); space sector capital (ks,t);

R&D expenditure (St); gross domestic product (GDPt); real core sector wages (wc,t);

real space sector wages (ws,t); profits from intermediate goods producers (Dc,t and Ds,t);

and investment adjustment costs (Ψkc,t and Ψks,t). To stationarize the model around

the balanced growth path, the non-stationary variables are rewritten as the product of

their detrended components (denoted with the tilde sign) and the number of adopted

technologies (At). After rewriting the equations in this form, the model relationships can

be reformulated in terms of stationary variables and the stochastic growth rate, so that

the variables have a proper steady state, and the model can be solved. The derivations

are the following:

• Adopted technologies:

At

At−1
≡ exp(xt) = λϕ

[
Z̃t−1At−1

At−1
− At−1

At−1

]
+ ϕ

At−1

At−1
= λϕ

[
Z̃t−1 − 1

]
+ ϕ.

• Existing technologies:

Zt = Z̃tAt = ϕZt−1 + ξt−1St−1 = ϕZ̃t−1At−1 + ξt−1S̃t−1At−1,
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so that

Z̃t exp(xt) = ϕZ̃t−1 + ξt−1S̃t−1.

• R&D spending:

βΓEt
uc,t+1

uc,t
Jt+1 = βΓEt

ũc,t+1

ũc,t

1

xt+1
Jt+1 =

1

ξt
.

• Definition of effective capital:

k̄s,t =
˜̄ks,tAt = uks,tks,t−1 = uks,t k̃s,t−1At−1,

so that

˜̄ks,t = uks,t k̃s,t−1
1

exp(xt)
.

Similarly,

k̄c,t =
˜̄kc,tAt = ukc,tkc,t−1 = ukc,t k̃c,t−1At−1,

so that

˜̄kc,t = ukc,t k̃c,t−1
1

exp(xt)
.

• Space sector production:

(A2.6)

Ys,t = Ỹs,tAt

=
(
azs,t

) 1
v

[
(1− v)

1

pms,t

] 1−v
v

n1−αs
s,t

(
k̄s,t
)αs A

1−v
v(θm−1)

t

=
(
azs,t

) 1
v

[
(1− v)

1

pms,t

] 1−v
v

n1−αs
s,t

(
˜̄ks,tAt

)αs

A
1−v

v(θm−1)

t .
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Under the restriction for the existence of a balanced growth path:

v =
1

αs (1− θm) + θm
,

(A2.7) Ỹs,t =
(
azs,t

) 1
v

[
(1− v)

1

pms,t

] 1−v
v

n1−αs
s,t

(
˜̄ks,t

)αs

.

• Core sector production:

(A2.8)

Yc,t = Ỹc,tAt

=
(
azc,t

) 1
v

[
(1− v)

1

pmc,t

] 1−v
v

n1−αc
c,t

(
k̄c,t
)αc A

1−v
v(θm−1)

t

=
(
azc,t

) 1
v

[
(1− v)

1

pmc,t

] 1−v
v

n1−αc
c,t

(
˜̄kc,tAt

)αc

A
1−v

v(θm−1)

t ,

so that

(A2.9) Ỹc,t =
(
azc,t

) 1
v

[
(1− v)

1

pmc,t

] 1−v
v

n1−αc
c,t

(
˜̄kc,t

)αc

.

• Core sector labor demand:

(1− αc)vYc,t = (1− αc)vỸc,tAt = wc,tnc,t = w̃c,tAtnc,t,

so that

(1− αc)vỸc,t = w̃c,tnc,t.

• Space sector labor demand:

(1− αs)v Ys,t = (1− αs)vỸs,tAt = ws,tns,t = w̃s,tAtns,t,

so that
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(1− αs)vỸs,t = w̃s,tns,t.

• Core sector capital demand:

αcvYc,t = αcvỸc,tAt = rkc,tk̄c,t = rkc,t
˜̄kc,tAt,

so that

(A2.10) αcvỸc,t = rkc,t
˜̄kc,t.

• Core sector intermediate input demand:

(A2.11)

Mc,t =

[
(1− v)

azc,t
pmc,t

] 1
v

A
1−vθm
v(θm−1)

t n1−αc
c,t

(
k̄c,t
)αc

=

[
(1− v)

azc,t
pmc,t

] 1
v

A
1−vθm
v(θm−1)

t n1−αc
c,t

(
˜̄kc,tAt

)αc

=

[
(1− v)

azc,t
pmc,t

] 1
v

n1−αc
c,t

(
˜̄kc,t

)αc

.

• Space sector intermediate input demand:

(A2.12)

Ms,t =

[
(1− v)

azs,t
pms,t

] 1
v

A
1−vθm
v(θm−1)

t n1−αs
s,t

(
k̄s,t
)αs

=

[
(1− v)

azs,t
pms,t

] 1
v

A
1−vθm
v(θm−1)

t n1−αs
s,t

(
˜̄ks,tAt

)αs

=

[
(1− v)

azs,t
pms,t

] 1
v

n1−αs
s,t

(
˜̄ks,t

)αs

.

• Space sector capital demand:

αsvYs,t = αsvỸs,tAt = rks,tk̄s,t = rks,t
˜̄ks,tAt,
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so that

(A2.13) αsvỸs,t = rks,t
˜̄ks,t.

• Marginal utility of consumption:

(A2.14)

uc,t =
ũc,t
At

=
aζ,t
ct

=
aζ,t
c̃tAt

=
1

At

aζ,t
c̃t

,

so that

(A2.15) ũc,t =
aζ,t
c̃t

.

• Budget constraint:

(A2.16)

kc,t + ps,tks,t + ct + bt = k̃c,tAt + ps,tk̃s,tAt + c̃tAt + b̃tAt

=
Rt−1bt−1

πc,t
+ wc,tnc,t + ps,tws,tns,t

+ kc,t−1 (1− δkc + ukc,trkc,t)

+ ps,tks,t−1 (1− δks + uks,trks,t)−Ψkc,t − ps,tΨks,t

−Ψuc,tkc,t−1 − ps,tΨus,tks,t−1 − ps,tTs,t +Dc,t + ps,tDs,t

=
Rt−1b̃t−1At−1

πc,t
+ w̃c,tAtnc,t + ps,tw̃s,tAtns,t

+ k̃c,t−1At−1 (1− δkc + ukc,trkc,t)

+ ps,tk̃s,t−1At−1 (1− δks + uks,trks,t)

− Ψ̃kc,tAt − ps,tΨ̃ks,tAt −Ψuc,tk̃c,t−1At−1

− ps,tΨus,tk̃s,t−1At−1 − ps,tT̃s,tAt + D̃c,tAt + ps,tD̃s,tAt,

so that
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(A2.17)

k̃c,t + ps,tk̃s,t + c̃t + b̃t =
Rt−1b̃t−1

πc,t exp(xt)
+ w̃c,tnc,t + ps,tw̃s,tns,t

+
k̃c,t−1

exp(xt)
(1− δkc + ukc,trkc,t)

+ ps,t
k̃s,t−1

exp(xt)
(1− δks + uks,trks,t)

− Ψ̃kc,t − ps,tΨ̃ks,t −Ψuc,t
k̃c,t−1

exp(xt)

− ps,tΨus,t
k̃s,t−1

exp(xt)
− ps,tT̃s,t + D̃c,t + ps,tD̃s,t.

• Resource constraint:

(A2.18)

ct+kc,t− (1−δkc) kc,t−1+ps,tks,t+(1−δks) ps,tks,t−1+St+AtMc,t+ps,tAtMs,t =

c̃tAt + k̃c,tAt − (1− δkc) k̃c,t−1At−1 + ps,tk̃s,tAt

+ (1− δks) ps,tk̃s,t−1At−1 + S̃tAt +AtMc,t + ps,tAtMs,t

= Yc,t − ps,tYs,t −
ηk
2

(
kc,t
kc,t−1

− Γ

)2

kc,t−1

− ηk
2

(
ks,t
ks,t−1

− Γ

)2

ps,tks,t−1 −Ψuc,tkc,t−1 −Ψus,tps,tks,t−1

= Ỹc,tAt −
ηk
2

(
k̃c,tAt

k̃c,t−1At−1

− Γ

)2

k̃c,t−1At−1

− ηk
2

(
k̃s,tAt

k̃s,t−1At−1

− Γ

)2

ps,tk̃s,t−1At−1

−Ψuc,tk̃c,t−1At−1 −Ψus,tps,tk̃s,t−1At−1,

so that

(A2.19)

c̃t + k̃c,t − (1− δkc)
k̃c,t−1

expxt
+ ps,tk̃s,t + (1− δks)

ps,tk̃s,t−1

expxt
+ S̃t +Mc,t + ps,tMs,t

= Ỹc,t −
ηk
2

(
k̃c,t

k̃c,t−1

exp(xt)− Γ

)2
k̃c,t−1

expxt

− ηk
2

(
k̃s,t

k̃s,t−1

exp(xt)− Γ

)2

ps,t
k̃s,t−1

expxt
−Ψuc,t

k̃c,t−1

expxt
−Ψus,tps,t

k̃s,t−1

expxt
.
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• Investment adjustment costs:

(A2.20)

Ψkc,t = Ψ̃kc,tAt−1

=
ηk
2

(
kc,t
kc,t−1

− Γ

)2

kc,t−1

=
ηk
2

[
k̃c,t

k̃c,t−1

(
At

At−1

)
− Γ

]2
k̃c,t−1At−1,

so that

(A2.21) Ψ̃kc,t =
ηk
2

(
k̃c,t

k̃c,t−1

exp(xt)− Γ

)2

k̃c,t−1.

Similarly,

(A2.22)

Ψks,t = Ψ̃ks,tAt−1

=
ηk
2

(
ks,t
ks,t−1

− Γ

)2

ks,t−1

=
ηk
2

[
k̃c,t

k̃c,t−1

(
At

At−1

)
− Γ

]2
k̃s,t−1At−1,

so that

(A2.23) Ψ̃ks,t =
ηk
2

(
k̃s,t

k̃s,t−1

exp(xt)− Γ

)2

k̃s,t−1.

• Euler equation:

uc,t =
ũc,t
At

= βΓRtEt
uc,t+1

πc,t+1
= βΓRtEt

ũc,t+1

πc,t+1

1

At+1
,

so that

ũc,t = βΓRtEt
ũc,t+1

πc,t+1

(
1

exp(xt+1)

)
.

• Labor supply to core sector:

(A2.24) aζ,tφtφ
cnνc

c,t = wc,tuc,t =
w̃c,tAtũc,t

At
= w̃c,tũc,t.
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• Labor supply to space sector:

(A2.25) aζ,tφtφ
snνs

s,t = ps,tws,tuc,t =
ps,tw̃s,tAtũc,t

At
= ps,tw̃s,tũc,t.

• Capital supply to core sector:

uc,t

[
1 + ηk

(
kc,t
kc,t−1

− Γ

)]

=
ũc,t
At

[
1 + ηk

(
k̃c,tAt

k̃c,t−1At−1

− Γ

)]

= βΓEtuc,t+1

[
1− δkc + rkc,t+1ukc,t+1 −Ψuc,t+1 +

ηk
2

(
kc,t+1

2

kc,t
2 − Γ2

)]

= βΓEt
ũc,t+1

At+1

[
1− δkc + rkc,t+1ukc,t+1 −Ψuc,t+1 +

ηk
2

(
k̃2c,t+1At+1

2

k̃2c,tAt
2

− Γ2

)]
,

so that

ũc,t

[
1 + ηk

(
k̃c,t

k̃c,t−1

expxt − Γ

)]
=

βΓEtũc,t+1

(
1

expxt+1

)[
1− δkc + rkc,t+1ukc,t+1 −Ψuc,t+1 +

ηk
2

(
k̃2c,t+1

k̃2c,t
(expxt+1)

2 − Γ2

)]
.

(A2.26)

• Capital supply to space sector:

ps,tuc,t

[
1 + ηk

(
ks,t
ks,t−1

− Γ

)]

=
ũc,t
At

[
1 + ηk

(
k̃s,tAt

k̃s,t−1At−1

− Γ

)]

= βΓEtps,t+1uc,t+1

[
1− δks + rks,t+1uks,t+1 −Ψus,t+1 +

ηk
2

(
ks,t+1

2

ks,t
2 − Γ2

)]

= βΓEtps,t+1
ũc,t+1

At+1

[
1− δks + rks,t+1uks,t+1 −Ψus,t+1 +

ηk
2

(
k̃2s,t+1At+1

2

k̃2s,tAt
2

− Γ2

)]
,
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so that

ps,tũc,t

[
1 + ηk

(
k̃s,t

k̃s,t−1

expxt − Γ

)]
=

βΓEtps,t+1ũc,t+1

(
1

expxt+1

)[
1− δks + rks,t+1uks,t+1 −Ψus,t+1 +

ηk
2

(
k̃2s,t+1

k̃2s,t
(expxt+1)

2 − Γ2

)]
.

(A2.27)

• Definition of nominal wage inflation:

ωc,t =
wc,t

wc,t−1
πc,t =

w̃c,t

w̃c,t−1
exp(xt)πc,t.

Similarly,

ωs,t =
ws,t

ws,t−1
πc,t =

w̃s,t

w̃s,t−1
exp(xt)πc,t.

XI. Steady State

This section derives the deterministicsteady state for the variables in the stationarized-

model presented in Appendix X. Variables without the time subscript denote steady-state

values.

First, we impose that the steady-state rate of growth of the economy (x) is equal to the

parameter γ, or equivalently that the gross rate, exp(x), is equal to the parameter Γ:

x = γ, and expx = Γ.

The capital supply conditions, eq. (A2.26) and eq. (A2.27), give the steady-state values

of the rental rates of capital in the two sectors:

(A2.28) rkc = (1/β − 1 + δkc), and rks = (1/β − 1 + δks).

Adjustment costs of investment and capacity utilization costs are zero:

Ψ̃kc = Ψ̃ks = Ψ̃uc = Ψ̃us = 0,

since it holds that:

ukc = uks = 1, ωc = 1 + γ, ωs = 1 + γ.
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The steady state of the inflation rates, the space sector share, and the markups are as

follows:

πc = 1, πs = 1, gs = χ.

Using the capital demand conditions, eq. (A2.10) and eq. (A2.13), together with the

steady-state values for the rental rates of capital, eq. (A2.28), it is possible to find the

ratios of core sector capital and space sector capital to output (denoted, respectively, with

ζ0 and ζ1):

ζ0 ≡
˜̄kc

Ỹc
=

αc

(1/β − 1 + δkc)
, ζ1 ≡

˜̄ks

Ỹs
=

αs

(1/β − 1 + δks)
.

From the equations of intermediate goods producers, we obtain the following steady-state

relationships:

pmc = pms =
θm

θm − 1
.

ζ2 ≡
Mc

Ỹc
=

v

pmc
, and ζ3 ≡

Ms

Ỹs
=

v

pms
.

The amount of hours worked in the two sectors is imposed according to the ratio observed

in the data, and set equal to the two parameters nss
c and nss

s :

nc = nss
c , and ns = nss

s ,

where nss
c is normalized to nss

c = 1 and nss
c to nss

s = 0.56/100 (the steady-state share of

the space sector in the economy (χ), see the main text). To ensure that the equilibrium

value of hours worked is equal to nss
c and nss

s , the labor disutility weights φc and φs are

calibrated accordingly (see below). From the equations of wholesale firms, we obtain the

following steady-state values:

Ỹc =

(
1− v

pmc

) 1−v
v(1−αc)

ζ
αc

(1−αc)

0 nc, and Ỹs =

(
1− v

pms

) 1−v
v(1−αs)

ζ
αs

(1−αs)

1 ns.

From these values, the steady state of the other endogenous variables is easily obtained:

Mc = ζ2Ỹc, Ms = ζ3Ỹs,

˜̄kc = ζ0Ỹc,
˜̄ks = ζ1Ỹs,

k̃c = Γ˜̄kc, k̃s = Γ˜̄ks,

ps =
χỸc

Ỹs
= 1,
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Dc = (pmc − 1)Mc, Ds = (pms − 1)Ms,

V =
1

1− ϕ− β
(Dc + psDs) ,

J =
1

1− ϕβ (1− λ)
(ϕβλV ) ,

From the first order condition of the R&D sector, we have:

ξc =
1

βJ
,

From the equation connecting adopted technologies (A) to existing ones (Z):

Z̃ =
1

λϕ
(λϕ+ Γ− ϕ) ,

We target the steady-state ratio between space sector existing technologies and all existing

technologies (χA):

Z̃c =
1

1 + χA
Z̃.

Using the fact that total technologies are space sector technologies plus core sector tech-

nologies:

Z̃s = Z̃ − Z̃c.

From the relationship:

Z̃s =
ξ̂sỸ

ϵs
s

Γ− ϕs
,

we obtain the steady-state value for ξ̂s:

ξ̂s = (Z̃ − Z̃c)
Γ− ϕs

Ỹ ϵs
s

.

From the equation determining the spillover from space to core technologies, eq. (2.20),

we get an expression for the stock of spillover technologies (Z̃spill
c ):

Z̃spill
c = λspϕcZ̃s

Γ

Γ− ϕc(1− λsp)
.

Therefore, it is possible to determine the steady-state value of the spillover flow S̃pillsc:

S̃pillsc =
1

Γ
λspϕc

(
Z̃s − Z̃spill

c

)
.
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Through equation (2.14), we then find the steady-state value for Z̃c:

(A2.29) Z̃cΓ = ϕcZ̃c + ξcS̃ + ξ̂spillsc S̃pillscΓ.

We target the steady-state ratio between new technologies due to the spillover and new

technologies due to R&D to be equal to χspill, which allows us to find ξ̂spillsc :

ξ̂spillsc = χspill
ξcS̃

S̃pillscΓ
.

By rearranging (A2.29), the steady-state amount of R&D resources (S̃) is given by:

S̃ =
1

ξc

[
Z̃c(Γ− ϕc)− ξ̂spillsc S̃pillscΓ

]
.

From the steady-state value of S̃, we are able to find the constant ξ̂c in steady-state core

sector innovation productivity:

ξ̂c =
ξc

S̃ϵc − 1
.

We define the following two ratios for convenience:

ζ4 ≡
S̃

Ỹc
,

ζ5 ≡
c̃

Ỹc
= 1 + ζ0 (1− δkc − Γ) + ζ1 (1− δks − Γ)χ− ζ2 − ζ3χ− ζ4.

Therefore, steady-state consumption (c̃) and steady-state marginal utility of consumption

are given by, respectively:

c̃ = ζ5Ỹc, and ũc =
1

c̃
.

The values of c̃ and ũc allow us to find the expression for the labor disutility weights φc

and φs:

φc =
1

n1+νc
c

[
(1− αc) v

ζ5

]
, and φs =

1

n1+νs
s

[
χ
(1− αs) v

ζ5

]
.

From these values and the labor supply conditions (A2.24) and (A2.25), we find the wages

in the two sectors:

w̃c =
φcnνc

c

ũc
, w̃s =

φsnνs
s

psũc
.

Finally, the expression for space sector taxes (T̃s) is the following:

T̃s = w̃sns + rksuks k̃s/Γ + pms Ms.
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XII. Data Construction

Gross Domestic Product

Real gross domestic product (GDP) is retrieved from the U.S. Bureau of Economic

Analysis series GDPC1. The series is seasonally adjusted and expressed in billions of

chained 2012 dollars. The GDP is divided by the Civilian Noninstitutional Population

(series CNP16OV from the U.S. Bureau of Labor Statistics) to transform it in per capita

terms. As shown in the measurement equations, the series is connected to the model in

log differences. These rates are not demeaned so that information on growth is retained.

Consumption

Aggregate real consumption in billions of chained 2012 dollars is provided by the U.S.

Bureau of Economic Analysis in the PCECC96 series. The series is seasonally adjusted

and is divided by the Population Level (CNP16OV) to get per capita consumption. As

for GDP, the growth rates are not demeaned.

Investment

Real Gross Private Domestic Investment is retrieved from the U.S. Bureau of Economic

Analysis series GPDIC1. It is seasonally adjusted and measured in billions of chained 2012

dollars. It is divided by the Population Level (CNP16OV) to get per capita investment.

Also for this series, the growth rates are not demeaned.

Hours worked

Data on hours worked is obtained from the U.S. Bureau of Labor Statistics’ Current

Employment Statistics (Establishment Survey). The series of hours worked per capita

is obtained by multiplying the average Weekly Hours of Production and Nonsupervisory

Employees (AWHNONAG) by the number of employees on nonfarm payrolls (PAYEMS)

and dividing by the Population Level (CNP16OV). The original monthly series are filtered

to the quarterly frequency by applying the arithmetic mean. All series are seasonally

adjusted. As shown in the measurement equations, the series is fed to the model in log

differences.

Aerospace activity

Data on aerospace industrial production is obtained from the Board of Governors of

the Federal Reserve System in the IPG3364S series. The series represents an index of

industrial production of Aerospace Product and Parts, and it is seasonally adjusted and

taken in non-demeaned growth rates. The aerospace IP between 1960:Q1 and 1972:Q1



CORRADO, GRASSI AND PAOLILLO 61

is imputed using aerospace capacity utilization. This is because the aerospace industrial

production has a shorter sample than aerospace capacity utilization, and the two series

are closely correlated.

Research and Development expenditure

Research and Development Output is obtained from the U.S. Bureau of Economic

Analysis series Y694RX1Q020SBEA: Real Gross Domestic Product: Research and Devel-

opment. It is divided by the Population Level (CNP16OV) to get per capita R&D. The

series is connected to the model in log differences. Also for this series we do not perform

demeaning.
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