Reforming Electricity Markets for a Decarbonised Energy System

David Newbery,* *EPRG, University of Cambridge*DESNZ virtual

18th September 2025

*I am a member of STAC, DESNZ, but there are purely personal views

Outline

- 2030 net zero electricity => new market design
 - ⇒ Reform of Electricity Market Arrangements (REMA)
- Implications of least system cost
 - Locational pricing where are we?
 - Coordinating network and generation investment
 - Problem of curtailment
 - ⇒ Reform CfDs for Variable Renewable Electricity- VRE
- Problems remaining managing interconnectors
 - Mismatch between real-time and day-ahead prices?
 - => Massive compensation or markets collapse?

UK VRE capacity to double by 2030 in 7 years

2030 FES24 Hydrogen Evolution

Net Zero messages

- Locating new generation is critical
 - wrong locations increase congestion, curtailment
 - need better locational guidance
- Renewables CfD support needs reform
 - Need better hedge against uncertain future prices
 - and incentives to curtail with modest penalty
- High VRE increases importance of interconnectors
 - ensure efficient dispatch of surplus Scottish wind
 - hard to do without zonal prices

GB Reform status

- Reform of Electricity Market Arrangements 2023-4
 - "market forces alone are currently unable to deliver our objectives"
 - Need better locational signals for massive renewable investment
 - ⇒ consultation (2024) rules out LMP*, consider zonal charges
 - ⇒Zonal charges ruled out 2025 so now what?
- Electricity Networks Commissioner's report 2023
 - New generation very different locations to fossil plant
 - Currently 14 yrs to deliver new transmission => reduce to 7yrs(?!)
 - Need to reform planning system to avoid massive delays
- National Energy System Operator (NESO) 2024
 - Taken into public ownership to coordinate all networks
 - Deliver Strategic Spatial Energy Plan & Regional Energy System Plan(s)

^{*} Locational Marginal or nodal Prices D Newbery

Reason for locational pricing: impact on interconnectors

Current transmission charging methodology

Transmission Network Use of System (TNUoS) charges set annually for Generation

TNUoS Tariffs 2021-22

Guiding location decisions: possible approaches

- Current: set locational TNUoS charges to guide location
 - TNUoS based on Investment Cost Related Prices (ICRP ≈ LRMC)
 - £/MWkm; zones defined by LMPs; assumes instantly adjustable
- Problems of TNUoS:
 - Changed annually even for plant that cannot move
 - changes muted to avoid excessive investor uncertainty
 - Adjusts slowly at best, poor short-run decisions
- ⇒ long-term TNUoS contracts guide efficient location
- Alternative: firm connections in uncongested zones
- Non-firm connections where constraints
 - last entered first curtailed off
 - no compensation if curtailed

Minor or major changes?

- Minor change:
 - NESO predicts least cost entry to plan network expansion
 - decides what strong signals to send now on where to locate
 - Long-term TNUoS contracts to guide timing and location decisions updated each year before VRE auctions
- Moderate change
 - Reform real-time market to give different prices by zone?
 - export Northern wind to Norway, import French nuclear to South
 - But risks of either massive congestion compensation or collapse of DAM
- Radical change
 - Empower NESO:
 - Secures consents for best sites for entry and network expansion
 - Sites auctioned at optimal date for connection and output contract

Variable Renewable Electricity VRE: wind, PV

- Peak:average output for wind 2-4:1, PV 8-11:1
- ⇒ increasing volumes curtailed as VRE rises
- ⇒ exacerbated by transmission constraints
- Marginal curtailment is 3+ times average
 - i.e. last MW curtailed 3+ times average
- ⇒ critical to locate new VRE at uncongested nodes
- ⇒ need strong locational connection signals
 - ⇒ + integrated network and generation location planning

Transmission congestion curtails Scottish wind

Evolution of wind curtailment in Scotland 2010-2021

Average vs marginal curtailment

VRE capacity factors

Scotland transmission constraints already very serious

Curtailment in 2020 by commissioning date of Scottish wind farms

EC Regulation 2024/1747

- "the energy crisis.. has revealed a number of shortcomings and unexpected consequences" (9)
 - One-sided CfDs and Feed-in Premium => windfall profits
- Public support schemes "should be two-way CfDs" (35)
- should be voluntary (37)
- CfDs holders "should participate efficiently in the electricity markets" (41)

UK CfDs with FiTs meet some but not all of these

Reforming CfDs to be market responsive - 1

Designing long-term low-risk VRE contract

- Current CfD with FiT pays fixed price for metered output
- Standard CfD: contract independent of output
 - => Generate if **price>variable cost**, not if not (buy cheaper from the market)
- ⇒ Make contracted amount = forecast output/MW of wind/PV
 - ⇒ Or based on regional neighbours as in Spain
- Limit number of full operating hours to remove location distortion
 - E.g. 40,000 MWh/MW (see (BEIS p59 fn 31, p80 = deemed generation)
 - Provides guaranteed revenue for contract duration
- Auction to determine strike price s for new contracts
- Grandfather existing contracts as location decision has been made

Newbery 15

Earlier auction price falls, reversed

Source: https://www.gov.uk/government/publications/contracts-for-difference-cfd-allocation-round-6-results

Market responsiveness - 2

- Alternative to a financial or yardstick CfD:
- No CfD payment if hourly spot price is ≤ €0
 - ≈ avoidable cost of VRE
- => avoids inefficient dispatch order main inefficiency
- Simpler to design/introduce
 - Already adopted by some countries
 - Works better with contract in MWh/MW not years
- Does it encourage efficient spot/balancing trading?
 - only with nodal pricing at least in real-time market?

Merchant exposure?

- Developer may prefer more market exposure
 - possible upside compensates for low prices
 - ⇒ Partial cover: 2-sided CfD via auction for 80% capacity
 - remaining 20% capacity exposed to market
- Popular in Australia, lower public exposure
 - Similar risk to 100% cover, allows more VRE for given auction size
- Consistent with Regulation's voluntary contracting

Conclusions: market design

- GB recognises market reforms needed
- Location decisions for new generation critical
 - ⇒ Better locational investment signals
- ⇒ Long-term TNUoS contracts for new entrants
 - only new entrants can choose where to locate
 - current TNUoS for existing generators for smooth transition
- Zonal prices to guide IC flows (real-time market)?
 - ⇒ big problems/costs if real-time price different from DAM price
- Network planning through NESO
 - should be more pro-active in securing good VRE sites
- Minor reforms to CfDs to make them market responsive
 - -Can be introduced before each auction round

Conclusions: CfDs

- 2-sided CfDs need to be made market responsive
 - yardstick CfD or no payment at/below zero price
 - pay on forecast output, compensate by fixed-hour contact
- VRE needs good locational investment signals
 - to minimise congested curtailment
 - no more wind in Scotland until massive new transmission
- Minimise excess rent from high resource locations
 - e.g. 40,000 MWh/MW contracted
 - auctions: encourage numerous competitors

2-sided CfDs: good but not good enough

Reforming Electricity Markets for a Decarbonised Energy System

David Newbery,* *EPRG, University of Cambridge*DESNZ virtual

18th Sepember 2025

*I am a member of STAC, DESNZ, but there are purely personal views

References

- Kröger. M. and D. Newbery, 2024. Renewable electricity contracts: lessons from European experience, Papales de Energiá, 24 at https://www.funcas.es/revista/papeles-de-energia-24
- Newbery, D. 2021. National Energy and Climate Plans for the island of Ireland: wind curtailment, interconnectors and storage, *Energy Policy* 158, 112513, 1-11. https://doi.org/10.1016/j.enpol.2021.112513
- Newbery, D., 2022 Commentary on REMA at https://www.eprg.group.cam.ac.uk/wp-content/uploads/2022/10/Newbery-Response-to-REMA-.pdf
- Newbery, D., 2023. Reforming Electricity Markets for High Renewable Penetration, Oxford Energy Forum, 136, 19-23. https://www.oxfordenergy.org/publications/electricity-market-design-during-the-energy-transitions-and-the-energy-crisis-issue-136
- Newbery, D., 2023. Designing efficient Renewable Electricity Support Schemes, *The Energy Journal*, Vol. 44(3), 1-22., https://doi.org/10.5547/01956574.44.3.dnew
- Newbery, D., 2023. Regulation of access, fees, and investment planning of transmission in Great Britain, at https://www.jbs.cam.ac.uk/wp-content/uploads/2024/02/eprg-wp2307.pdf

Acronyms

CfD: Contract for Difference

ESO: Electricity System Operator

FES: Future Energy Scenario (of NG ESO)

FiT: Feed-in Tariff (paid on metered injection)

LMP: Locational marginal (nodal) price

LRMC: Long-run marginal cost

NG ESO: National Grid ESO

NESO National Energy System Operator

OWF: Offshore wind farm

REMA: Review of electricity market arrangements

RPD: electricity half-hourly price index

RO(C): Renewable obligation (certificate)

TNUoS: Transmission Network Use of System charges

VRE: variable renewable electricity

WACC: weighted average cost of capital

Network costs: benefits of coordination

Current GB Off-shore regime:

- Developer gets consent (5yrs), bids for CfD in auction (£/MWh,15yr)
 - builds wind farm and connection (offshore transmission, OFT)
 - OFT auctioned, repays developer in return for 20 yr OFTO charge £/kWyr
 - Wind farm also pays on-shore TNUoS charge (can change annually)
- => why not offer a 20yr **on-shore** TNUoS charge?
- NG ESO Holistic Network Design for offshore wind:
 - Optimised cost to deliver 50 GW offshore wind target = £54 bn
 - Compares current responsive to coordinated approach
 - Saves £7.6bn (14%) to just connecting each OWF separately
 - Requires coordination between off-shore wind developers

Coordinating location of new on and off-shore wind and network likely to reduce system costs considerably

Response to Winser report suggests this in Strategic Spatial Energy Plan

Reforming VRE support

- Aim: minimise cost of finance while ensuring market responsiveness
- VRE and grid contracts should
 - Hedge long-term risks
 - Signal least system-cost location for each technology
 - Provide short-term operating signals (congestion, curtailment, flexibility)
 - Minimise infra-marginal rent to favoured locations
 - Maximise competition => auction sets single country-wide strike price
- Pay for capacity not output for efficient technology choice
 - ⇒ Costs are up-front, running costs independent of market prices
- ⇒ Efficient grid charges guide location
- ⇒ Long-term efficient nodal TNUoS (transmission) charges
 - ⇒ 20 yr fixed charge updated for new contracts with new system information
 - ⇒ Provides future cost certainty before VRE bids in auction

Case for CfDs

- CfDs address future market price risk
 - Generators lose when prices low, while retailers gain & vice versa
- ⇒ conventional CfD is a mutually attractive price hedge
 - ⇒ Leave to market, standardise for liquidity
 - ⇒ Purely financial, does not distort production/trading
- Long-term price hedges can reduce cost of capital
 - PPAs work with credible asset-heavy counterparty
 - But limited potential, insufficient for massive renewables
 - For which only credible counterparty is state or regulator

Long-term contracts replace missing futures market

UK CfD with FiT design

- Standard 2-sided CfD specifies volume M MW, strike price s
- Generator receives (or pays) (s p)M regardless of output
 - May be paid or pay depending on expected reference price p
- If p > c (avoidable cost) generator produces y > M MW
 - Profit is (s p)M + (p c)y = (s c)M + (p c)(y M)
 - both positive
- If p < c generator produces zero
 - Profit is (s-p)M as y=0
 - Financial arbitrage pushes s towards expected future price, p
- CfD incentivises efficient market response
- CfD with FiT pays (s p)y on metered output y for 15 yrs
- Profit is (s p)y + (p c)y = (s c)y

No incentive to change output in response to p